首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electroweak breaking and the supersymmetric particle spectrum are discussed in superstring theories where the gauge group after compactification isSO(10)×E s , and where the gauge symmetry after flux breaking isSU(3)×SU(2)×SU(2)×U(1).  相似文献   

2.
The supergroup SU(71) defines a model with 8 generations of quarks and leptons. One half of these are chiral-inverted. The model represents an anomaly-free SU(71) × U(1) gauge unification theory (GUT).  相似文献   

3.
We present a supersymmetricSU(5)×U(1) model. This model has the following features. The gauge hierarchy is naturally generated by the quadratically divergent nature of the Fayet-IliopoulosD term. TheSU(5)×U(1) gauge symmetry breaks uniquely intoSU(3) W ×SU(2) c ×U(1) y at an energy scale of 1017–18GeV. The non-vanishing vacuum expectation value of an auxiliary field component ofU(1) gauge vector multiplet induces the breaking ofSU(2) W ×U(1) y . It gives a mass of 102–3GeV to scalar quarks and scalar leptons at the tree level. The renormalization group analysis shows that the color fine structure constant α C (M W ) becomes somewhat small and the Weinberg angle sin2θ W (M W ) somewhat too large in a simple version of the model.  相似文献   

4.
5.
《Physics letters. [Part B]》1988,211(3):322-328
We present a gauge theory in ten dimensions based on the gauge group E8 which is dimensionally reduced, according to the coset space dimensional reduction (CSDR) scheme, to the standard model SU3c×SU2L×U1, which breaks further to SU3c×U1em. We use the coset space Sp4/(SU2×U1)×Z2. The model gives similar predictions for sin2θw and proton decay as the minimal SU5 GUT. Natural choices of parameters suggest that the Higgs masses are as predicted by the Coleman-Weinberg radiative mechanism.  相似文献   

6.
Despite great efforts and partial successes the situation with respect to spontaneously broken supersymmetric unified gauge models of weak, electromagnetic and strong interactions has remained quite unsatisfactory up to now. Starting from the most simple SU(2) × U(1) cases we exploit possible extensions. This naturally leads to a consideration of vector-like models with—in the first instance—a larger number of multiplets. Although the later can be made massive without spoiling the conservation of fermion number, the additional massive fermions only show parity conserving interactions with all the intermediate vector fields. Therefore models with larger gauge groups are considered: SU(2) × SU(2) × U(1) with two quartets, SU(3) × U(1) with four triplets, and finally SU(3) × SU(2) × U(1) with two sextets of matter fields. None of these can be accepted yet as a true model for physical particles, but it is shown how different negative features in the simple theories may be avoided in the more complicated ones. Thus our results may be considered as an encouraging starting point for investigations of larger gauge groups in supersymmetric models.  相似文献   

7.
We compute in the standard model of SU(3)c×(SU(2)×U(1)) with massless quarks and leptons the two-loop anomalous dimensions of the four-fermion operators relevant to proton decay in process involving (u, d, e, νe). The calculation is carried out by the use of dimensional reduction, a variant of dimensional regularization. Our aim is to give a complete calculation within the SU(5) GUT model of the next-to-leading enhancement-suppression factor for nucleon decay due to renormalization effects arising from hard gluons, W's and B's in process which involve (u, d, e, νe). It turns out that the result is sensitive to the ratios x(i) = MH (i)/MX where MH(i) are the masses of the twelve superheavy Higgs scalars in the 24 multiplet which breaks SU(5) → SU(3)×SU(2)×U(1).  相似文献   

8.
A left-right symmetric SUL(3) × SUR(3) gauge model with leptons in the (3, 3) + (3, 3) representation is presented. The SUIL(2)×U(1) subgroup is practically the WS + GIM model for sin2?W38, with additional currents involving heavy leptons. μ is naturally suppressed and a new kind of νe?νμ oscillations is possible. τ and 3μ events can be related to one leptonic triplet. The model is naturally imbedded in exceptional groups.  相似文献   

9.
We derive the Salam-Weinberg model by gauging an internal simple supergroup SU(21). The theory uniquely assigns the correct SU(2)L ? U(1) eigenvalues for all leptons, fixes θW = 30°, generates the W±σ, Z0σ and Aσ together with the Higgs-Goldstone IL = 12 scalar multiplets as gauge fields, and imposes the standard spontaneous breakdown of SU(2)L ? U(1). The masses of intermediate bosons and fermions are directly generated by SU(21) universality, which also fixes the Higgs field coupling.  相似文献   

10.
《Physics letters. [Part B]》1999,461(3):243-247
If the smallness of the mass of the sterile neutrino is to be explained by the see-saw mechanism, the off-diagonal entries of the mass matrix needs to be protected by some symmetry not far above the electroweak scale. We implement see-saw mechanism in a gauge model based on SU(2)qL×SU(2)lL×U(1)qY×U(1)lY un-unified gauge group which breaks to SU(2)L×U(1)Y at the TeV region via a two-step symmetry breaking chain. The right handed diagonal block is tied to the highest scale up to which the un-unification symmetry holds. The sterile neutrino emerges from a quark-lepton mixed representation of the un-unified group.  相似文献   

11.
We study a model of a pure Yang Mills theory with gauge group SU(2) on a lattice in Euclidean space. We compare it with the model obtained by restricting variables to Z2. An inequality relating expectation values of the Wilson loop integral in the two theories is established. It shows that confinement of static quarks is true in our SU(2) model whenever it holds for the corresponding Z2-model. The SU(2) model is shown to have high and low temperature phases that are distinguished by a qualitatively different behavior of the 't Hooft disorder parameter.  相似文献   

12.
B Bhuyan  B B Deo 《Pramana》1987,28(6):621-632
A supersymmetric version of the left right symmetric partial unification group SU C (4) × SU L (2) × SU R (2) is presented. The spontaneous breakdown of gauge symmetry in a favourable chain of descent has been studied in detail. The mass spectra have been calculated. The method of O’Raifeartaigh has been used to break supersymmetry. The lifting of degeneracy of mass levels between physical multiplets has been shown to occur due to radiative corrections.  相似文献   

13.
We consider modifications of the minimal supersymmetric SU(5) grand unified model. With the additional Higgses 10 +10, the theory may be modified so that the proton decays dominantly via the conventional mode p→e+π with the lifetime πp=(0.04-710)×1030yr, and sin2θW=0.222±0.003.  相似文献   

14.
We analyze possible indirect signals of additional neutral gauge bosons at futuree + e ? colliders, concentrating onSU(2) L ×U(1) y ×U(1) y , andSU(2) L ×SU(2) R ×U(1) effective theories. We develop a simple formalism to describe these effects and make a careful study of radiative corrections, in particular initial state radiation, which will be shown to have important implications. To make realistic estimates of the sensitivity to the new gauge boson effects, we use a model detector fore + e ? annihilation at a center of mass energy of 500 GeV. Using a number of selected physical observables we then show that masses considerably higher than the total energy (up to a factor of 6) can be probed and that distinction between various theoretical models is possible.  相似文献   

15.
The number of chiral fermions may change in the course of spontaneous symmetry breaking. We discuss solutions of a six-dimensional Einstein-Yang-Mills theory based on SO(12). In the resulting effective four-dimensional theory they can be interpreted as spontaneous breaking of a gauge group SO(10) to H = SU(3)C × SU(2)L × U(1)R × U(10)B?L. For all solutions, the fermions which are chiral with respect to H form standard generations. However, the number of generations for the solutions with broken SO(10) may be different compared to the symmetric solutions. All solutions considered here exhibit a local generation group SU(2)G × U(1)G. For the solutions with broken SO(10) symmetry, the leptons and quarks within one generation transform differently with respect to SU(2)G × U(1)G. Spontaneous symmetry breaking also modifies the SO(10) relations among Yukawa couplings. All this has important consequences for possible fermion mass relations obtained from higher-dimensional theories.  相似文献   

16.
A model based on a low energySU(3)c×SU(2)1×SU(2)2×U(1) H gauge group is considered. Theb-quark couples mainly to thec-quark via a new heavyW-boson and thet-quark is omitted altogether. The model is shown to be compatible with low energy charged current data. \(B_d^0 - \bar B_d^0 \) mixing occurs through the exchange of the heavyW-boson and through gluino exchange in the supersymmetric version of the model. The calculated mixing is much smaller in both cases than the observed effect and the model is, therefore, ruled out.  相似文献   

17.
A new model based on aSU(2) R ×SU(2) L ×U(1) B-L gauge symmetry group is presented. Fermion masses are generated by radiative corrections.  相似文献   

18.
We have constructed the first “realistic candidate” preon model with low composite scale satisfying complementarity between the Higgs and confining phases. The model is based onSU(4) metacolor and predicts four generations of ordinary quarks and leptons together with heavy neutrinos at the level of the standard gauge groupSU(3) c ×SU(2) L ×U(1) Y . There are no exotic massless fermions. The global family group isSU(2)×U(1).  相似文献   

19.
We study the renormalization group equations of the gauge couplings in theSU(4)×O(4)~SU(4)×SU(2) L ×SU(2_ R string model, derived in the context of the free fermionic formulation of the four dimensional superstring. We calculate the effective string unification scale taking into account string threshold corrections and we consider the consequences of then L andn R fractionally charged states, sitting in the (1, 2, 1) and (1, 1, 2) representations correspondingly, of the gauge symmetry of the model. Some of these states become massive at a very high scale, when a number of singlet fields acquire vev's. However, many of them (the precise number depends on the specific choice of the flat direction) remain in the massless spectrum. We consider various cases and find that, for specific choices of flat directions, the physical parameters of the model, like the grand unification scale and the low energy parameters sin2θ W and α3, depend only on the differencen ?=nL-nR. We study more general cases where remnants of the exotic doublets remain below theSU(4) breaking scale. We also solve the coupled differential system of the renormalization group equations for the gauge and the Yukawa couplings and estimate the range of the top quark mass which is found to lie in the range 140 GeV<m t<190GeV.  相似文献   

20.
We supersymmetrize the very attractive flavour unification modelSU (11). As with other supersymmetric GUTs the gauge hierarchy problem is simplified, but we may also have observable (τ p ≈1033 yrs) proton decay. The required split multiplets are obtained by making the adjoint take a particular direction. Supersymmetry is broken softly at the TeV scale. There is a uniqueU(1) A symmetry, and hence there are no true Nambu-Goldstone bosons. TheU(1) A is broken at the GUT scale and there result an invisible axion and neutrino masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号