首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability to analyze highly toxic chemical warfare agents (CWAs) and related chemicals in a rapid and precise manner is essential in order to alleviate serious threats to humankind and public security caused by unexpected terrorist attacks and industrial accidents. In this investigation, we designed a o‐phenylenediamine‐pyronin linked dye that is capable of both fluorogenic and colorimetric discrimination between phosgene and the prototypical nerve‐agent mimic, diethyl chlorophosphate (DCP) in the solution or gas phase. Moreover, this dye has been used to construct a portable kit that can be employed for real‐time monitoring of DCP and phosgene in the field, both in a discriminatory manner, and in a simple and safe way.  相似文献   

2.
The development of the first asymmetric trans-selective hydrogenation of 1,3-disubstituted isoquinolines is reported. Utilizing [Ir(cod)Cl]2 and a commercially available chiral Josiphos ligand, a variety of differentially substituted isoquinolines are hydrogenated to produce enantioenriched trans-tetrahydroisoquinolines in good yield with high levels of enantioselectivity. Directing group studies demonstrate that the hydroxymethyl functionality at the C1 position is critical for hydrogenation to favor the trans-diastereomer. Preliminary mechanistic studies reveal that non-coordinating chlorinated solvents and halide additives are crucial to enable trans-selectivity.

trans-Selective asymmetric hydrogenation of 1,3-disubstituted isoquinolines.  相似文献   

3.
《Chemical science》2021,12(1):16
A welcome to 2021 from May Copsey, Executive Editor, Chemical Science.

Diamond or platinum open access; open and free, for authors and readers. However you describe it, being open and accessible is at the heart of what we are aiming to achieve in Chemical Science.  相似文献   

4.
The rise of antimicrobial resistance remains one of the greatest global health threats facing humanity. Furthermore, the development of novel antibiotics has all but ground to a halt due to a collision of intersectional pressures. Herein we determine the antimicrobial efficacy for 14 structurally related supramolecular self-associating amphiphiles against clinically relevant Gram-positive methicillin resistant Staphylococcus aureus and Gram-negative Escherichia coli. We establish the ability of these agents to selectively target phospholipid membranes of differing compositions, through a combination of computational host:guest complex formation simulations, synthetic vesicle lysis, adhesion and membrane fluidity experiments, alongside our novel 1H NMR CPMG nanodisc coordination assays, to verify a potential mode of action for this class of compounds and enable the production of evermore effective next-generation antimicrobial agents. Finally, we select a 7-compound subset, showing two lead compounds to exhibit ‘druggable’ profiles through completion of a variety of in vivo and in vitro DMPK studies.

A combination of computational and synthetic phospholipid vesicle/nanodisc assays are used to investigate the mode of action for a class of antimicrobial agents, while a range of DMPK studies establish agent druggability.  相似文献   

5.
Unprotected 2-acetamido sugars may be directly converted into their oxazolines using 2-chloro-1,3-dimethylimidazolinium chloride (DMC), and a suitable base, in aqueous solution. Freeze drying and acid catalysed reaction with an alcohol as solvent produces the corresponding 1,2-trans-glycosides in good yield. Alternatively, dissolution in an aprotic solvent system and acidic activation in the presence of an excess of an unprotected glycoside as a glycosyl acceptor, results in the stereoselective formation of the corresponding 1,2-trans linked disaccharides without any protecting group manipulations. Reactions using aryl glycosides as acceptors are completely regioselective, producing only the (1→6)-linked disaccharides.

Un-protected 2-acetamido sugars are stereoselectively converted into 1,2-trans glycosides and (1→6)-linked disaccharides without any protecting groups. Reaction proceeds via intermediate oxazolines which react with acceptors under acid catalysis.  相似文献   

6.
The threat associated with chemical warfare agents (CWAs) motivates the development of new materials to provide enhanced protection with a reduced burden. Metal–organic frame‐works (MOFs) have recently been shown as highly effective catalysts for detoxifying CWAs, but challenges still remain for integrating MOFs into functional filter media and/or protective garments. Herein, we report a series of MOF–nanofiber kebab structures for fast degradation of CWAs. We found TiO2 coatings deposited via atomic layer deposition (ALD) onto polyamide‐6 nanofibers enable the formation of conformal Zr‐based MOF thin films including UiO‐66, UiO‐66‐NH2, and UiO‐67. Cross‐sectional TEM images show that these MOF crystals nucleate and grow directly on and around the nanofibers, with strong attachment to the substrates. These MOF‐functionalized nanofibers exhibit excellent reactivity for detoxifying CWAs. The half‐lives of a CWA simulant compound and nerve agent soman (GD) are as short as 7.3 min and 2.3 min, respectively. These results therefore provide the earliest report of MOF–nanofiber textile composites capable of ultra‐fast degradation of CWAs.  相似文献   

7.
Among the carbo-difunctionalization of alkynes, the stereoselective dialkylation of alkynes is the most challenging transformation due to associated competitive side reactions and thus remains underdeveloped. Herein, we report the first Ni-catalyzed regio- and trans-selective cross-dialkylation of alkynes with two distinct alkyl bromides to afford olefins with two aliphatic substituents. The reductive conditions circumvent the use of organometallic reagents, enabling the cross-dialkylation process to occur at room temperature from two different alkyl bromides. This operationally simple protocol provides a straightforward and practical access to a wide range of stereodefined dialkylated olefins with broad functional group tolerance from easily available starting materials.

A direct reductive cross-dialkylation of alkynes is achieved to afford trans-dialkylated olefins using two distinct alkyl bromides. The reaction undergoes with exclusive chemo-, regio- and stereoselectivity without the use of organometallic reagents.  相似文献   

8.
Photoisomeric supramolecular assemblies have drawn enormous attention in recent years. Although it is a general rule that photoisomerization from a less to a more distorted isomer causes the destruction of assemblies, this photoisomerization process inducing a converse transition from irregular aggregates to regular assemblies is still a great challenge. Here, we report a converse sol-to-gel transition derived from the planar to nonplanar photoisomer conversion, which is in sharp contrast to the conventional light-induced gel collapse. A well-designed acylhydrazone-linked monomer is exploited as a photoisomer to realize the above-mentioned phase transition. In the monomer, imine is responsible for transcis interconversion and amide generates intermolecular hydrogen bonds enabling the photoisomerization-driven self-assembly. The counterintuitive feature of the sol-to-gel transition is ascribed to the partial transcis photoisomerization of acylhydrazone causing changes in stacking mode of monomers. Furthermore, the reversible phase transition is applied in the valves formed in situ in microfluidic devices, providing fascinating potential for miniature materials.

A converse sol-to-gel transition system based on transcis photoisomerization of acylhydrazone-based supramolecular assemblies has been sucessfully established, which was applied in the gel-based microvalves that can in situ control flow by light.  相似文献   

9.
Molecular photoswitches play a vital role in the development of responsive materials. These molecular building blocks are particularly attractive when multiple stimuli can be combined to bring about physical changes, sometimes leading to unexpected properties and functions. The arylazoisoxazole molecular switch was recently shown to be capable of efficient photoreversible solid-to-liquid phase transitions with application in photoswitchable surface adhesion. Here, we show that the arylazoisoxazole forms thermally stable and photoisomerisable protonated Z- and E-isomers in an apolar aprotic solvent when the pKa of the applied acid is sufficiently low. The tuning of isomerisation kinetics from days to seconds by the pKa of the acid not only opens up new reactivity in solution, but also the solid-state photoswitching of azoisoxazoles can be efficiently reversed with selected acid vapours, enabling acid-gated photoswitchable surface adhesion.

Molecular photoswitches are versatile components for materials with bistable and photoreversible properties. Here, we enrich the functionality of the arylazoisoxazole molecular switch by analyzing its photoresponsive protonated Z- and E-isomers.  相似文献   

10.
The Ritter reaction, Brønsted- or Lewis acid-mediated amidation of alkene or alcohol with nitrile via a carbocation, represents a classical method for the synthesis of tertiary amides. Although analogous reactions through a vinyl cation or a species alike may offer a route to enamide, an important synthetic building block as well as a common functionality in bioactive compounds, such transformations remain largely elusive. Herein, we report a Ritter-type trans-difunctionalization of alkynes with a trivalent iodine electrophile and nitrile, which affords β-iodanyl enamides in moderate to good yields. Mediated by benziodoxole triflate (BXT), the reaction proves applicable to a variety of internal alkynes as well as to various alkyl- and arylnitriles. The benziodoxole group in the product serves as a versatile handle for further transformations, thus allowing for the preparation of various tri- and tetrasubstituted enamides that are not readily accessible by other means.

Ritter-type trans-selective iodo(iii)amidation of internal alkynes with benziodoxole triflate and various nitriles has been achieved for the stereocontrolled synthesis of multisubstituted enamides.  相似文献   

11.
The biosynthesis of polyketides by type I modular polyketide synthases (PKS) relies on co-ordinated interactions between acyl carrier protein (ACP) domains and catalytic domains within the megasynthase. Despite the importance of these interactions, and their implications for biosynthetic engineering efforts, they remain poorly understood. Here, we report the molecular details of the interaction interface between an ACP domain and a ketoreductase (KR) domain from a trans-acyltransferase (trans-AT) PKS. Using a high-throughput mass spectrometry (MS)-based assay in combination with scanning alanine mutagenesis, residues contributing to the KR-binding epitope of the ACP domain were identified. Application of carbene footprinting revealed the ACP-binding site on the KR domain surface, and molecular docking simulations driven by experimental data allowed production of an accurate model of the complex. Interactions between ACP and KR domains from trans-AT PKSs were found to be specific for their cognate partner, indicating highly optimised interaction interfaces driven by evolutionary processes. Using detailed knowledge of the ACP:KR interaction epitope, an ACP domain was engineered to interact with a non-cognate KR domain partner. The results provide novel, high resolution insights into the ACP:KR interface and offer valuable rules for future engineering efforts of biosynthetic assembly lines.

The interaction epitope between a cognate KR–ACP domain pairing from a trans-AT polyketide synthase is elucidated in molecular detail, providing unique insights into recognition and specificity of the interface.  相似文献   

12.
Despite the blossoming of reports of diastereodivergent synthesis over the past years, switchable control of the stereochemistry of the bridgehead atoms of the fused frameworks has been significantly underdeveloped. Here we disclose the ability of Pd0-π-Lewis base catalysis to finely reverse the concerted inverse-electron-demand aza-Diels–Alder cycloaddition reaction between cyclic 1,3-dienes and aurone-derived 1-azadienes. In contrast, the in situ-formed HOMO-energy-increased Pd02-complexes of cyclic 1,3-dienes underwent a cascade vinylogous Michael addition/allylic amination process with 1-azadienes. Moreover, judicious selection of chiral ligands allowed for switchable diastereodivergent [4 + 2] annulations to be accomplished, resulting in the construction of both cis- and trans-fused tetrahydropyridine architectures in high yields with moderate to excellent stereoselectivity levels. A variety of acyclic 1,3-dienes and 1-heterodienes were also applied, and furnished a structural diversity of enantioenriched frameworks.

Diastereodivergent and asymmetric [4 + 2] annulations between cyclic 1,3-dienes and 1-azadienes via ligand-controlled Pd catalysis have been realized, furnishing both cis- and trans-fused tetrahydropyridines in good yields and stereoselectivity levels.  相似文献   

13.
The gas-phase reactions of a series of coordinatively unsaturated [Ni(L)n]y+ complexes, where L is a nitrogen-containing ligand, with chemical warfare agent (CWA) simulants in a miniature rectilinear ion trap mass spectrometer were investigated as part of a new approach to detect CWAs. Results show that upon entering the vacuum system via a poly(dimethylsiloxane) (PDMS) membrane introduction, low concentrations of several CWA simulants, including dipropyl sulfide (simulant for mustard gas), acetonitrile (simulant for the nerve agent tabun), and diethyl phosphite (simulant for nerve agents sarin, soman, tabun, and VX), can react with metal complex ions generated by electrospray ionization (ESI), thereby providing a sensitive means of detecting these compounds. The [Ni(L)n]2+ complexes are found to be particularly reactive with the simulants of mustard gas and tabun, allowing their detection at low parts-per-billion (ppb) levels. These detection limits are well below reported exposure limits for these CWAs, which indicates the applicability of this new approach, and are about two orders of magnitude lower than electron ionization detection limits on the same mass spectrometer. The use of coordinatively unsaturated metal complexes as reagent ions offers the possibility of further tuning the ion-molecule chemistry so that desired compounds can be detected selectively or at even lower concentrations.
Figure
?  相似文献   

14.
Test strips that in combination with a portable fluorescence reader or digital camera can rapidly and selectively detect chemical warfare agents (CWAs) such as Tabun (GA), Sarin (GB), and Soman (GD) and their simulants in the gas phase have been developed. The strips contain spots of a hybrid indicator material consisting of a fluorescent BODIPY indicator covalently anchored into the channels of mesoporous SBA silica microparticles. The fluorescence quenching response allows the sensitive detection of CWAs in the μg m?3 range in a few seconds.  相似文献   

15.
A ligand-controlled palladium-catalyzed highly regioselective and diastereodivergent aminomethylative annulation of dienyl alcohols with aminals has been established, which allows for producing either cis- or trans-disubstituted isochromans in good yields with complete regioselectivity and good to excellent diastereoselectivity. Moreover, the chiral cis-products were also obtained in good yields with up to 94% ee by using a chiral phosphinamide as the ligand. Mechanistic studies revealed that the hydroxyl group plays a key role in facilitating the Pd-catalyzed Heck insertion regioselectively taking place across the internal C Created by potrace 1.16, written by Peter Selinger 2001-2019 C bond of conjugated dienes.

An efficient hydrogen-bonding assisted directing strategy has been identified, which enables the Pd-catalyzed highly regioselective and diastereodivergent 3,4-difunctionalized aminomethylative annulation of dienyl alcohols with aminals.  相似文献   

16.
Herein, we investigate the use of visible light to indirectly drive ring opening in unstrained 6- and 7-membered ring systems via reaction with a transiently generated trans-cycloalkene. Identification of conditions that capture visible light energy in the form of ring strain was key to success. Under mildly acidic conditions, cycloalkenols were shown to undergo formally endothermic ring-opening isomerization to give acyclic exo-methylene and distal ketones or aldehydes in high yields. Ultimately, this work demonstrates the ability of cycloalkenes to capture visible light energy and its use to drive both kinetically and thermally unfavorable rearrangements.

In this work, visible light drives a contrathermodynamic isomerization of the classic Stork-Danheiser products through an energy transfer process to yield acyclic distal enone(al) isomers. This is possible because the photochemical energy is transiently captured as ring strain as a trans-, or twisted, cyclohexene.  相似文献   

17.
Photoacoustic imaging (PAI) relies on the use of contrast agents with high molar absorptivity in the NIR-I/NIR-II region. Expanded porphyrins, synthetic analogues of natural tetrapyrrolic pigments (e.g. heme and chlorophyll), constitute as potentially attractive platforms due to their NIR-II absorptivity and their ability to respond to stimuli. Here, we evaluate two expanded porphyrins, naphthorosarin (1) and octaphyrin (4), as stimuli responsive PA contrast agents for functional PAI. Both undergo proton-coupled electron transfer to produce species that absorb well in the NIR-II region. Octaphyrin (4) was successfully encapsulated into 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) (DSPE-PEG2000) nanoparticles to afford OctaNPs. In combination with PAI, OctaNPs allowed changes in the acidic environment of the stomach to be visualized and cancerous versus healthy tissues to be discriminated.

In this study, two expanded porphyrins, octaphyrin and naphthorosarin were evaluated as potential PA agents. The nanoparticle encapsulation of octaphyrin successfully enabled the visualization of acidic environments and the discrimination between cancerous and healthy tissues.  相似文献   

18.
Nucleic acid-based dissipative, out-of-equilibrium systems are introduced as functional assemblies emulating transient dissipative biological transformations. One system involves a Pb2+-ion-dependent DNAzyme fuel strand-driven network leading to the transient cleavage of the fuel strand to “waste” products. Applying the Pb2+-ion-dependent DNAzyme to two competitive fuel strand-driven systems yields two parallel operating networks. Blocking the competitively operating networks with selective inhibitors leads, however, to gated transient operation of dictated networks, yielding gated catalytic operations. A second system introduces a “non-waste” generating out-of-equilibrium, dissipative network driven by light. The system consists of a trans-azobenzene-functionalized photoactive module that is reconfigured by light to an intermediary state consisting of cis-azobenzene units that are thermally recovered to the original trans-azobenzene-modified module. The cyclic transient photoinduced operation of the device is demonstrated. The kinetic simulation of the systems allows the prediction of the transient behavior of the networks under different auxiliary conditions.

Functional DNA modules are triggered in the presence of appropriate inhibitors to yield transient gated catalytic functions, and a photoresponsive DNA module leads to “waste-free” operation of transient, dissipative dynamic transitions.  相似文献   

19.
Advanced analytical applications require smart materials and sensor systems that are able to adapt or be configured to specific tasks. Based on reversible photochemistry in nanoporous materials, we present a sensor array with a selectivity that is reversibly controlled by light irradiation. The active material of the sensor array, or electronic nose (e-nose), is based on metal–organic frameworks (MOFs) with photoresponsive fluorinated azobenzene groups that can be optically switched between their trans and cis state. By irradiation with light of different wavelengths, the transcis ratio can be modulated. Here we use four transcis values as defined states and employ a four-channel quartz-crystal microbalance for gravimetrically monitoring the molecular uptake by the MOF films. We apply the photoprogrammable e-nose to the sensing of different volatile organic compounds (VOCs) and analyze the sensor array data with simple machine-learning algorithms. When the sensor array is in a state with all sensors either in the same trans- or cis-rich state, cross-sensitivity between the analytes occurs and the classification accuracy is not ideal. Remarkably, the VOC molecules between which the sensor array shows cross-sensitivity vary by switching the entire sensor array from trans to cis. By selectively programming the e-nose with light of different colors, each sensor exhibits a different isomer ratio and thus a different VOC affinity, based on the polarity difference between the trans- and cis-azobenzenes. In such photoprogrammed state, the cross-sensitivity is reduced and the selectivity is enhanced, so that the e-nose can perfectly identify the tested VOCs. This work demonstrates for the first time the potential of photoswitchable and thus optically configurable materials as active sensing material in an e-nose for intelligent molecular sensing. The concept is not limited to QCM-based azobenzene-MOF sensors and can also be applied to diverse sensing materials and photoswitches.

A sensor array with four identical photoresponsive azobenzene-containing metal–organic framework films is selectively irradiated. By photoprogamming the array, the sensor selectivity is switched and optimized.  相似文献   

20.
Mixed-matrix membranes (MMMs) provide a means to formulate metal–organic frameworks (MOFs) into processable films that can help to advance their use in various applications. Conventional MMMs are inherently susceptible to craze or tear upon exposure to impact, cutting, bending, or stretching, which can limit their intended service life and usage. Herein, a simple, efficient, and scalable in situ fabrication approach was used to prepare self-healing MMMs containing Zr(iv)-based MOFs. The ability of these MMMs to self-heal at room temperature is based on the reversible hydrolysis of boronic-ester conjugates. Thiol–ene ‘photo-click’ polymerization yielded robust MMMs with ∼30 wt% MOF loading and mechanical strength that varied based on the size of MOF particles. The MMMs could undergo repeated self-healing with good retention of mechanical strength. In addition, the MMMs were catalytically active toward the degradation of the chemical warfare agent (CWA) simulant dimethyl-4-nitrophenyl phosphate (DMNP) with no change in activity after two damage-healing cycles.

Self-healable mixed-matrix membranes (MMMs) are described with adjustable mechanical strength, dynamic covalent chemistry, and metal–organic frameworks (MOFs) that degrade a toxic chemical warfare agent (CWA) simulant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号