首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioactive compounds from medicinal plants are good alternative treatments for T2DM. They are also sources of lead molecules that could lead to new drug discoveries. In this study, Bauhinia strychnifolia Craib. stem, a traditional Thai medicinal plant for detoxification, was extracted into five fractions, including crude extract, BsH, BsD, BsE, and BsW, by ethanolic maceration and sequential partition with hexane, dichloromethane, ethyl acetate, and water, respectively. Among these fractions, BsE contained the highest amounts of phenolics (620.67 mg GAE/g extract) and flavonoids (131.35 mg QE/g extract). BsE exhibited the maximum inhibitory activity against α-glucosidase (IC50 1.51 ± 0.01 µg/mL) and DPP-IV (IC50 2.62 ± 0.03 µg/mL), as well as dominantly promoting glucose uptake on 3T3-L1 adipocytes. Furthermore, the four compounds isolated from the BsE fraction, namely resveratrol, epicatechin, quercetin, and gallic acid, were identified. Quercetin demonstrated the highest inhibitory capacity against α-glucosidase (IC50 6.26 ± 0.36 µM) and DPP-IV (IC50 8.25 µM). In addition, quercetin prominently enhanced the glucose uptake stimulation effect on 3T3-L1 adipocytes. Altogether, we concluded that quercetin was probably the principal bioactive compound of the B. strychnifolia stem for anti-diabetic, and the flavonoid-rich fraction may be sufficiently potent to be an alternative treatment for blood sugar control.  相似文献   

2.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

3.
Bioassay-guided fractionation of extracts derived from solid cultures of a Herbidospora daliensis originating from Taiwan led to the isolation of five new compounds, for which we propose the name herbidosporadalins A–E (1–5), one isolated for the first time, herbidosporadalin F (6), together with two known compounds (7 & 8). Their structures were elucidated by spectroscopic analyses, including 1D- and 2D-NMR experiments with those of known analogues, and on the basis of HR-EI-MS mass spectrometry, their anti-inflammatory activities were also evaluated. Of these isolates, herbidosporadalin A (1), B (2), F (6) and G (8) showed NO inhibitory activity, with IC50 values of 11.8 ± 0.9, 7.1 ± 2.9, 17.8 ± 1.7, and 13.3 ± 6.5 μM, stronger than the positive control quercetin (IC50 = 36.8 ± 1.3 μM). To the best of our knowledge, this is the first report on 3,4-seco-friedelane metabolites (5, 6 & 8) from the genus Herbidospora.  相似文献   

4.
Cancer is a multifactorial disease and the second leading cause of death worldwide. Diverse factors induce carcinogenesis, such as diet, smoking, radiation, and genetic defects. The phosphatidylinositol 3-kinase (PI3Kα) has emerged as an attractive target for anticancer drug design. Eighteen derivatives of N-phenyl-6-chloro-4-hydroxy-2-quinolone-3-carboxamide were synthesized and characterized using FT-IR, NMR (1H and 13C), and high-resolution mass spectra (HRMS). The series exhibited distinct antiproliferative activity (IC50 µM) against human epithelial colorectal adenocarcinoma (Caco-2) and colon carcinoma (HCT-116) cell lines, respectively: compounds 16 (37.4, 8.9 µM), 18 (50.9, 3.3 µM), 19 (17.0, 5.3 µM), and 21 (18.9, 4.9 µM). The induced-fit docking (IFD) studies against PI3Kαs showed that the derivatives occupy the PI3Kα binding site and engage with key binding residues.  相似文献   

5.
Anti-diabetic compounds from natural sources are now being preferred to prevent or treat diabetes due to adverse effects of synthetic drugs. The decoction of Muntingia calabura leaves was traditionally consumed for diabetes treatment. However, there has not been any published data currently available on the processing effects on this plant’s biological activity and phytochemical profile. Therefore, this study aims to evaluate the effect of three drying methods (freeze-drying (FD), air-drying (AD), and oven-drying (OD)) and ethanol:water ratios (0, 50, and 100%) on in vitro anti-diabetic activities of M. calabura leaves. In addition, an ultrahigh-performance-liquid chromatography–electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method was used to characterize the metabolites in the active extract. The FD M. calabura leaves, extracted with 50% ethanol, is the most active extract that exhibits a high α-glucosidase and α-amylase inhibitory activities with IC50 values of 0.46 ± 0.05 and 26.39 ± 3.93 µg/mL, respectively. Sixty-one compounds were tentatively identified by using UHPLC-ESI-MS/MS from the most active extract. Quantitative analysis, by using UHPLC, revealed that geniposide, daidzein, quercitrin, 6-hydroxyflavanone, kaempferol, and formononetin were predominant compounds identified from the active extract. The results have laid down preliminary steps toward developing M. calabura leaves extract as a potential source of bioactive compounds for diabetic treatment.  相似文献   

6.
Three new (1–3) and 25 known compounds were isolated from the crude extract of Cassia abbreviata. The chemical structures of new compounds were established by extensive spectroscopic analyses including 1D and 2D NMR and HRESIMS. Cassiabrevone (1) is the first heterodimer of guibourtinidol and planchol A. Compound 2 was a new chalcane, while 3 was a new naphthalene. Cassiabrevone (1), guibourtinidol-(4α→8)-epiafzelechin (4), taxifolin (8), oleanolic acid (17), piceatannol (22), and palmitic acid (28), exhibited potent anti-HIV-1 activity with IC50 values of 11.89 µM, 15.39 µM, 49.04 µM, 7.95 µM, 3.58 µM, and 15.97 µM, respectively.  相似文献   

7.
Investigation of the methanol extract of the poroid fungus Fuscoporia torulosa resulted in the isolation of a novel triterpene, fuscoporic acid (1), together with inoscavin A and its previously undescribed Z isomer (2 and 3), 3,4-dihydroxy-benzaldehide (4), osmundacetone (5), senexdiolic acid (6), natalic acid (7), and ergosta-7,22-diene-3-one (8). The structures of fungal compounds were determined on the basis of NMR and MS spectroscopic analyses, as well as molecular modeling studies. Compounds 1, 6–8 were examined for their antibacterial properties on resistant clinical isolates, and cytotoxic activity on human colon adenocarcinoma cell lines. Compound 8 was effective against Colo 205 (IC50 11.65 ± 1.67 µM), Colo 320 (IC50 8.43 ± 1.1 µM) and MRC-5 (IC50 7.92 ± 1.42 µM) cell lines. Potentially synergistic relationship was investigated between 8 and doxorubicin, which revealed a synergism between the examined compounds with a combination index (CI) at the 50% growth inhibition dose (ED50) of 0.521 ± 0.15. Several compounds (1 and 6–8) were tested for P-glycoprotein modulatory effect in Colo 320 resistant cancer cells, but none of the compounds proved to be effective in this assay. Fungal metabolites 2–5 were evaluated for their antioxidant activity using the oxygen radical absorbance capacity (ORAC) and DPPH assays. Compounds 4 and 5 were found to have a considerable antioxidant effect with EC50 0.25 ± 0.01 (DPPH) and 12.20 ± 0.92 mmol TE/g (ORAC). The current article provides valuable information on both the chemical and pharmacological profiles of Fuscoporia torulosa, paving the way for future studies with this species.  相似文献   

8.
Two new minor Amaryllidaceae alkaloids were isolated from Hippeastrum × hybridum cv. Ferrari and Narcissus pseudonarcissus cv. Carlton. The chemical structures were identified by various spectroscopic (one- and two-dimensional (1D and 2D) NMR, circular dichroism (CD), high-resolution mass spectrometry (HRMS) and by comparison with literature data of similar compounds. Both isolated alkaloids were screened for their human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) inhibition activity. One of the new compounds, a heterodimer alkaloid of narcikachnine-type, named narciabduliine (2), showed balanced inhibition potency for both studied enzymes, with IC50 values of 3.29 ± 0.73 µM for hAChE and 3.44 ± 0.02 µM for hBuChE. The accommodation of 2 into the active sites of respective enzymes was predicted using molecular modeling simulation.  相似文献   

9.
Medicinal plants offer imperative sources of innovative chemical substances with important potential therapeutic effects. Among them, the members of the genus Inula have been widely used in traditional medicine for the treatment of several diseases. The present study investigated the antioxidant (DPPH, ABTS and FRAP assays) and the in vitro anti-hyperglycemic potential of aerial parts of Inula viscosa (L.) Aiton (I. viscosa) extracts through the inhibition of digestive enzymes (α-amylase and α-glucosidase), responsible of the digestion of poly and oligosaccharides. The polyphenolic profile of the Inula viscosa (L.) Aiton EtOAc extract was also investigated using HPLC-DAD/ESI-MS analysis, whereas the volatile composition was elucidated by GC-MS. The chemical analysis resulted in the detection of twenty-one polyphenolic compounds, whereas the volatile profile highlighted the occurrence of forty-eight different compounds. Inula viscosa (L.) Aiton presented values as high as 87.2 ± 0.50 mg GAE/g and 78.6 ± 0.55mg CE/g, for gallic acid and catechin, respectively. The EtOAc extract exhibited the higher antioxidant activity compared to methanol and chloroform extracts in different tests with (IC50 = 0.6 ± 0.03 µg/mL; IC50 = 8.6 ± 0.08 µg/mL; 634.8 mg ± 1.45 AAE/g extract) in DPPH, ABTS and FRAP tests. Moreover, Inula viscosa (L.) Aiton leaves did show an important inhibitory effect against α-amylase and α-glucosidase. On the basis of the results achieved, such a species represents a promising traditional medicine, thanks to its remarkable content of functional bioactive compounds, thus opening new prospects for research and innovative phytopharmaceuticals developments.  相似文献   

10.
Diabetes mellitus is a chronic disease and one of the fastest-growing health challenges of the last decades. Studies have shown that chronic low-grade inflammation and activation of the innate immune system are intimately involved in type 2 diabetes pathogenesis. Momordica charantia L. fruits are used in traditional medicine to manage diabetes. Herein, we report the purification of a new 23-O-β-d-allopyranosyl-5β,19-epoxycucurbitane-6,24-diene triterpene (charantoside XV, 6) along with 25ξ-isopropenylchole-5(6)-ene-3-O-β-d-glucopyranoside (1), karaviloside VI (2), karaviloside VIII (3), momordicoside L (4), momordicoside A (5) and kuguaglycoside C (7) from an Indian cultivar of Momordica charantia. At 50 µM compounds, 2–6 differentially affected the expression of pro-inflammatory markers IL-6, TNF-α, and iNOS, and mitochondrial marker COX-2. Compounds tested for the inhibition of α-amylase and α-glucosidase enzymes at 0.87 mM and 1.33 mM, respectively. Compounds showed similar α-amylase inhibitory activity than acarbose (0.13 mM) of control (68.0–76.6%). Karaviloside VIII (56.5%) was the most active compound in the α-glucosidase assay, followed by karaviloside VI (40.3%), while momordicoside L (23.7%), A (33.5%), and charantoside XV (23.9%) were the least active compounds. To better understand the mode of binding of cucurbitane-triterpenes to these enzymes, in silico docking of the isolated compounds was evaluated with α-amylase and α-glucosidase.  相似文献   

11.
The Friedel–Crafts reaction between substituted indoles as nucleophiles with chalcones-based benzofuran and benzothiophene scaffolds was carried out by employing a highly efficient bimetallic iron–palladium catalyst system. This catalytic approach produced the desired bis-heteroaryl products with low catalyst loading, a simple procedure, and with acceptable yield. All synthesized indole scaffolds 3a–3s were initially evaluated for their cytotoxic effect against human fibroblast BJ cell lines and appeared to be non-cytotoxic. All non-cytotoxic compounds 3a–3s were then evaluated for their anticancer activities against cervical cancer HeLa, prostate cancer PC3, and breast cancer MCF-7 cell lines, in comparison to standard drug doxorubicin, with IC50 values 1.9 ± 0.4 µM, 0.9 ± 0.14 µM and 0.79 ± 0.05 µM, respectively, and appeared to be moderate to weak anticancer agents. Fluoro-substituted chalcone moiety-containing compounds, 3b appeared to be the most active member of the series against cervical HeLa (IC50 = 8.2 ± 0.2 µM) and breast MCF-7 cancer cell line (IC50 = 12.3 ± 0.04 µM), whereas 6-fluroindol-4-bromophenyl chalcone-containing compound 3e (IC50 = 7.8 ± 0.4 µM) appeared to be more active against PC3 prostate cancer cell line.  相似文献   

12.
The ethyl acetate extract of an ISP-2 agar cultivation of the wasp nest-associated fungus Penicillium sp. CMB-MD14 exhibited promising antibacterial activity against vancomycin-resistant enterococci (VRE), with a bioassay guided chemical investigation yielding the new meroterpene, oxandrastin A (1), the first andrastin-like metabolite with an extra oxygenation at C-2. A culture media optimisation strategy informed a scaled-up rice cultivation that yielded 1, together with three new oxandrastins B–D (2–4), two known andrastins C (5) and F (6), and a new meroterpene of the austalide family, isoaustalide F (7). Structures of 1–7 were assigned based on detailed spectroscopic analysis and chemical interconversion. A GNPS molecular networking analysis of the rice cultivation extract detected the known austalides B (8), H (9), and H acid (10), tentatively identified based on molecular formulae and co-clustering with 7. That the anti-VRE properties of the CMB-MD14 extract were exclusively attributed to 1 (IC50 6.0 µM, MIC99 13.9 µM), highlights the importance of the 2-OAc and 3-OAc moieties to the oxandrastin anti-VRE pharmacophore.  相似文献   

13.
Carvacrol (CV) is an essential oil with numerous therapeutic properties, including immunomodulatory activity. However, this effect has not been studied in nanoemulsion systems. The objective of this study was to develop an innovative carvacrol-loaded nanoemulsion (CVNE) for immunomodulatory action. The developed CVNE comprised of 5% w/w oily phase (medium chain triglycerides + CV), 2% w/w surfactants (Tween 80®/Span 80®), and 93% w/w water, and was produced by ultrasonication. Dynamic light scattering over 90 days was used to characterize CVNE. Cytotoxic activity and quantification of cytokines were evaluated in peripheral blood mononuclear cell (PBMC) culture supernatants. CVNE achieved a drug loading of 4.29 mg/mL, droplet size of 165.70 ± 0.46 nm, polydispersity index of 0.14 ± 0.03, zeta potential of −10.25 ± 0.52 mV, and good stability for 90 days. CVNE showed no cytotoxicity at concentrations up to 200 µM in PBMCs. CV diminished the production of IL-2 in the PBMC supernatant. However, CVNE reduced the levels of the pro-inflammatory cytokines IL-2, IL-17, and IFN-γ at 50 µM. In conclusion, a stable CVNE was produced, which improved the CV immunomodulatory activity in PBMCs.  相似文献   

14.
Carbonic anhydrase-II (CA-II) is strongly related with gastric, glaucoma, tumors, malignant brain, renal and pancreatic carcinomas and is mainly involved in the regulation of the bicarbonate concentration in the eyes. With an aim to develop novel heterocyclic hybrids as potent enzyme inhibitors, we synthesized a series of twelve novel 3-phenyl-β-alanine 1,3,4-oxadiazole hybrids (4a–l), characterized by 1H- and 13C-NMR with the support of HRESIMS, and evaluated for their inhibitory activity against CA-II. The CA-II inhibition results clearly indicated that the 3-phenyl-β-alanine 1,3,4-oxadiazole derivatives 4a–l exhibited selective inhibition against CA-II. All the compounds (except 4d) exhibited good to moderate CA-II inhibitory activities with IC50 value in range of 12.1 to 53.6 µM. Among all the compounds, 4a (12.1 ± 0.86 µM), 4c (13.8 ± 0.64 µM), 4b (19.1 ± 0.88 µM) and 4h (20.7 ± 1.13 µM) are the most active hybrids against carbonic CA-II. Moreover, molecular docking was performed to understand the putative binding mode of the active compounds. The docking results indicates that these compounds block the biological activity of CA-II by nicely fitting at the entrance of the active site of CA-II. These compounds specifically mediating hydrogen bonding with Thr199, Thr200, Gln92 of CA-II.  相似文献   

15.
Chromatographic investigation of the aerial parts of the Rhazya stricta (Apocynaceae) resulted in the isolation of two new monoterpene indole alkaloids, 6-nor-antirhine-N1-methyl (1) and razyamide (2), along with six known compounds, eburenine (3), epi-rhazyaminine (4), rhazizine (5), 20-epi-sitsirikine (6), antirhine (7), and 16-epi-stemmadenine-N-oxide (8). The chemical structures were established by various spectroscopic experiments. Compounds 1–8 exhibited cytotoxic effects against three cancer cells with IC50 values ranging between 5.1 ± 0.10 and 93.2 ± 9.73 µM against MCF-7; 5.1 ± 0.28 and 290.2 ± 7.50 µM against HepG2, and 3.1 ± 0.17 and 55.7 ± 4.29 µM against HeLa cells. Compound 2 showed the most potent cytotoxic effect against all cancer cell lines (MCF-7, HepG2 and HeLa with IC50 values = 5.1 ± 0.10, 5.1 ± 0.28, and 3.1 ± 0.17 µM, respectively). Furthermore, compound 2 revealed a significant increase in the apoptotic cell population of MCF-7, HepG2, and HeLa cells, with 31.4 ± 0.2%, 29.2 ± 0.5%, and 34.9 ± 0.6%, respectively. Compound 2 decreased the percentage of the phagocytic pathway on HepG2 cells by 15.0 ± 0.1%. These findings can explain the antiproliferative effect of compound 2.  相似文献   

16.
Different chromatographic methods including reversed-phase HPLC led to the isolation and purification of three O-methylated flavonoids; 5,4’-dihydroxy-3,6,7-tri-O-methyl flavone (penduletin) (1), 5,3’-dihydroxy-3,6,7,4’,5’-penta-O-methyl flavone (2), and 5-hydroxy-3,6,7,3’,4’,5’-hexa-O-methyl flavone (3) from Rhamnus disperma roots. Additionlly, four flavonoid glycosides; kampferol 7-O-α-L-rhamnopyranoside (4), isorhamnetin-3-O-β-D-glucopyranoside (5), quercetin 7-O-α-L-rhamnopyranoside (6), and kampferol 3, 7-di-O-α-L-rhamnopyranoside (7) along with benzyl-O-β-D-glucopyranoside (8) were successfully isolated. Complete structure characterization of these compounds was assigned based on NMR spectroscopic data, MS analyses, and comparison with the literature. The O-methyl protons and carbons of the three O-methylated flavonoids (1–3) were unambiguously assigned based on 2D NMR data. The occurrence of compounds 1, 4, 5, and 8 in Rhamnus disperma is was reported here for the first time. Compound 3 was acetylated at 5-OH position to give 5-O-acetyl-3,6,7,3’,4’,5’-hexa-O-methyl flavone (9). Compound 1 exhibited the highest cytotoxic activity against MCF 7, A2780, and HT29 cancer cell lines with IC50 values at 2.17 µM, 0.53 µM, and 2.16 µM, respectively, and was 2–9 folds more selective against tested cancer cell lines compared to the normal human fetal lung fibroblasts (MRC5). It also doubled MCF 7 apoptotic populations and caused G1 cell cycle arrest. The acetylated compound 9 exhibited cytotoxic activity against MCF 7 and HT29 cancer cell lines with IC50 values at 2.19 µM and 3.18 µM, respectively, and was 6–8 folds more cytotoxic to tested cancer cell lines compared to the MRC5 cells.  相似文献   

17.
α-Glucosidase plays a role in hydrolyzing complex carbohydrates into glucose, which is easily absorbed, causing postprandial hyperglycemia. Inhibition of α-glucosidase is therefore an ideal approach to preventing this condition. A novel polyprenylated benzoylphloroglucinol, which we named schomburgkianone I (1), was isolated from the fruit of Garcinia schomburgkiana, along with an already-reported compound, guttiferone K (2). The structures of the two compounds were determined using NMR and HRESIMS analysis, and comparisons were made with previous studies. Compounds 1 and 2 exhibited potent α-glucosidase inhibition (IC50s of 21.2 and 34.8 µM, respectively), outperforming the acarbose positive control. Compound 1 produced wide zones of inhibition against Staphylococcus aureus and Enterococcus faecium (of 21 and 20 mm, respectively), compared with the 19 and 20 mm zones of compound 2, at a concentration of 50 µg/mL. The MIC value of compound 1 against S. aureus was 13.32 µM. An in silico molecular docking model suggested that both compounds are potent inhibitors of enzyme α-glucosidase and are therefore leading candidates as therapies for diabetes mellitus.  相似文献   

18.
A series of new analogs of nitrogen mustards (4a–4h) containing the 1,3,5-triazine ring substituted with dipeptide residue were synthesized and evaluated for the inhibition of both acetylcholinesterase (AChE) and β-secretase (BACE1) enzymes. The AChE inhibitory activity studies were carried out using Ellman’s colorimetric method, and the BACE1 inhibitory activity studies were carried out using fluorescence resonance energy transfer (FRET). All compounds displayed considerable AChE and BACE1 inhibition. The most active against both AChE and BACE1 enzymes were compounds A and 4a, with an inhibitory concentration of AChE IC50 = 0.051 µM; 0.055 µM and BACE1 IC50 = 9.00 µM; 11.09 µM, respectively.  相似文献   

19.
Traditionally, Cymbopogon citratus is used to treat a variety of ailments, including cough, indigestion, fever, and diabetes. The previous chemical and bioactive research on C. citratus mainly focused on its volatile oil. In this study, 20 non-volatile known compounds were isolated from the dried aerial part of C. citratus, and their structures were elucidated by MS, NMR spectroscopy, and comparison with the published spectroscopic data. Among them, 16 compounds were reported for the first time from this plant. The screening results for antioxidant and α-glucosidase inhibitory activities indicated that compounds caffeic acid (5), 1-O-p-coumaroyl-3-O-caffeoylglycerol (8), 1,3-O-dicaffeoylglycerol (9) and luteolin-7-O-β-D-glucopyranoside (12) had potent antioxidant capacities, with IC50 values from 7.28 to 14.81 μM, 1.70 to 2.15 mol Trolox/mol and 1.31 to 2.42 mol Trolox/mol for DPPH, ABTS, and FRAP, respectively. Meanwhile, compounds 8 and 9 also exhibited significant inhibitory activities against α-glucosidase, with IC50 values of 11.45 ± 1.82 μM and 5.46 ± 0.25 μM, respectively, which were reported for the first time for their α-glucosidase inhibitory activities. The molecular docking result provided a molecular comprehension of the interaction between compounds (8 and 9) and α-glucosidase. The significant antioxidant and α-glucosidase inhibitory activities of compounds 8 and 9 suggested that they could be developed into antidiabetic drugs because of their potential regulatory roles on oxidative stress and digestive enzyme.  相似文献   

20.
The objective of this study was to assess the biological potency and chemical composition of Rumex vesicarius aboveground parts using GC–MS. In this approach, 44 components were investigated, comprising 99.99% of the total volatile compounds. The major components were classified as fatty acids and lipids (51.36%), oxygenated hydrocarbons (33.59%), amines (7.35%), carbohydrates (6.06%), steroids (1.21%), and alkaloids (0.42%). The major components were interpreted as 1,3-dihydroxypropan-2-yl oleate (oxygenated hydrocarbons, 18.96%), ethyl 2-hydroxycyclohexane-1-carboxylate (ester of fatty acid, 17.56%), and 2-propyltetrahydro-2H-pyran-3-ol (oxygenated hydrocarbons, 11.18%). The DPPH antioxidant activity of the extracted components of R. vesicarius verified that the shoot extract was the most potent with IC50 = 28.89 mg/L, with the percentages of radical scavenging activity at 74.28% ± 3.51%. The extracted plant, on the other hand, showed substantial antibacterial activity against the diverse bacterial species, namely, Salmonella typhi (23.46 ± 1.69), Bacillus cereus (22.91 ± 0.96), E. coli (21.07 ± 0.80), and Staphylococcus aureus (17.83 ± 0.67). In addition, the extracted plant was in vitro assessed as a considerable anticancer agent on HepG2 cells, in which MTT, cell proliferation cycle, and DNA fragmentation assessments were applied on culture and treated cells. The larvicidal efficacy of the extracted plant was also evaluated against Aedes aegypti, the dengue disease vector. As a result, we may infer that R. vesicarius extract increased cytocompatibility and cell migratory capabilities, and that it may be effective in mosquito control without causing harm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号