首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The analysis of vitamin D status, with special emphasis on 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, is gaining interest in clinical studies due to the classical and non-classical effects attributed to this prohormone. In this research, the influence of the two steps preceding determination (viz. sample collection and preparation) on the quantitative analysis of vitamin D and its more important metabolites has been studied. Two preparation approaches, deproteination and solid-phase extraction (SPE), have been evaluated in terms of sensitivity to delimit their application, thus establishing that detection of 1,25-dihydroxyvitamin D cannot be addressed by protein precipitation. Concerning sample collection, serum and plasma reported high accuracy (above 83.3%) for vitamin D and metabolites, while precision, expressed as relative standard deviation, was below 12.9% for all analytes in both samples. Statistical analysis revealed that serum and plasma provided similar physiological levels for vitamin D3, 24,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3, while significantly different levels were obtained for 1,25-dihydroxyvitamin D3, always higher in plasma than in serum. Sample collection and treatment have proved to be significant in the analysis of vitamin D and its relevant metabolites.  相似文献   

2.
Biologically active forms of vitamin D are important analytical targets in both research and clinical practice. The current technology is such that each of the vitamin D metabolites is usually analyzed by individual assay. However, current LC-MS technologies allow the simultaneous metabolic profiling of entire biochemical pathways. The impediment to the metabolic profiling of vitamin D metabolites is the low level of 1α,25-dihydroxyvitamin D3 in human serum (15–60 pg/mL). Here, we demonstrate that liquid–liquid or solid-phase extraction of vitamin D metabolites in combination with Diels–Alder derivatization with the commercially available reagent 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) followed by ultra-performance liquid chromatography (UPLC)–electrospray/tandem mass spectrometry analysis provides rapid and simultaneous quantification of 1α,25-dihydroxyvitamin D3, 1α,25-dihydroxyvitamin D2, 24R,25-dihydroxyvitamin D3, 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 in 0.5 mL human serum at a lower limit of quantification of 25 pg/mL. Precision ranged from 1.6–4.8 % and 5–16 % for 25-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3, respectively, using solid-phase extraction. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Vitamin D3 analogues have been developed for a mutant vitamin D receptor (VDR), Arg274Leu. The mutant VDR has a mutation at Arg274, which forms an important hydrogen bond with 1α-OH of 1α,25-dihydroxyvitamin D3 to anchor the ligand tightly in the VDR ligand binding pocket. Stereoselective synthesis of the A-ring part of the novel vitamin D analogue, 2α-(3-hydroxypropyl)-1α-methyl-25-hydroxyvitamin D3 (4), from d-galactose was accomplished with the key steps of the introduction of the methyl and allyl groups to the chiral building blocks. The new analogue 4 is ca. 7.3-fold more active than the natural hormone 1α,25-dihydroxyvitamin D3 (1).  相似文献   

4.
Introduction: The most common forms of vitamin D in human and mouse serum are vitamin D3 and vitamin D2 and their metabolites. The aim of this study is to determine whether diet and sunlight directly affect the circulating concentrations of vitamin D metabolites in a mouse model. We investigated the serum concentrations of eight vitamin D metabolites—vitamin D (vitamin D3 + vitamin D2), 25OHD (25OHD3 + 25OHD2), 1α25(OH)2D (1α25(OH)2D2, and 1α25(OH)2D3)—including their epimer, 3-epi-25OHD (3-epi-25OHD3 and 3-epi-25OHD2), and a bile acid precursor 7alpha-hydroxy-4-cholesten-3-one (7αC4), which is known to cause interference in liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Method: The LC-MS/MS method was validated according to FDA-US guidelines. The validated method was used for the analysis of mouse serum samples. Forty blood samples from mice were collected and divided into three groups. The first group, the DDD mice, were fed a vitamin D-deficient diet (25 IU VD3/kg of diet) and kept in the dark; the second group, the SDD mice, were maintained on a standard-vitamin D diet (1000 IU VD3) and kept in the dark; and the third group, SDL, were fed a standard-vitamin D diet (1000 IU VD3) but kept on a normal light/dark cycle. LC-MS/MS was used for the efficient separation and quantitation of all the analytes. Results: The validated method showed good linearity and specificity. The intraday and interday precision were both <16%, and the accuracy across the assay range was within 100 ± 15%. The recoveries ranged between 75 and 95%. The stability results showed that vitamin D metabolites are not very stable when exposed to continuous freeze–thaw cycles; the variations in concentrations of vitamin D metabolites ranged between 15 and 60%. The overlapping peaks of vitamin D, its epimers, and its isobar (7αC4) were resolved using chromatographic separation. There were significant differences in the concentrations of all metabolites of vitamin D between the DDD and SDL mice. Between the groups SDD (control) and SDL, a significant difference in the concentrations of 3-epi-25OHD was noted, where C3 epimer was about 30% higher in SDL group while no significant differences were noted in the concentrations of vitamin D, 25OHD, 1α25(OH)2D, and 7αC4 between SDD and SDL group. Conclusions: A validated method, combined with a simple extraction technique, for the sensitive LC-MS/MS determination of vitamin D metabolites is described here. The method can eliminate the interferences in LC-MS/MS analysis caused by the overlapping epimer and isobar due to them having the same molecular weights as 25OHD. The validated method was applied to mouse serum samples. It was concluded that a standard-vitamin D diet causes an increase in the proportion of all the vitamin D metabolites and C3 epimers and isobar, while UV light has no pronounced effect on the concentrations of the majority of the vitamin D metabolites except 3-epi-25OHD. Further studies are required to confirm this observation in humans and to investigate the biochemical pathways related to vitamin D’s metabolites and their epimers.  相似文献   

5.
Two physiologically important forms of vitamin D exist: vitamin D2 and vitamin D3, which by liver based hydroxylase enzymes are converted to 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3, respectively. These hydroxylated metabolites of vitamin D are measured in plasma to assess the vitamin D status of animals and humans. Therefore cheap and reliable analytical methods are very much in demand in nutritional and physiological research. After saponification and extraction of plasma or serum samples the current method uses reverse phase high performance liquid chromatography on a C30 column and with UV detection at 265 nm for quantifying vitamin D2, vitamin D3, 25-hydroxyvitamin D2, and 25-hydroxyvitamin D3. The method proved versatile with respect to plasma lipid content, sample amount, and plasma concentration of the vitamin D metabolites as it was tested using plasma from six different species: cattle, pigs, poultry, mink, horses, and humans. In cattle plasma recoveries were between 86.6 and 101.0%, within day error between 0.9 and 5.9%, and between day error between 0.2 and 1.7%. However, depending on species and sample amount error percentages varied. When running the method on standard reference material® 972 “Vitamin D in human serum” from the National Institute of Standards and Technology (NIST) (Gaithersburg, USA) the results for 25-hydroxyvitamin D2 and 25-hydroxyvitamin D3 concentrations were within the boundaries provided by NIST, reflected by Z-scores between 0.1 and 0.9.  相似文献   

6.
A liquid chromatography/electrospray ionization–tandem mass spectrometry‐based method was developed for the identification of the conjugation positions of the monoglucuronides of 25‐hydroxyvitamin D3 [25(OH)D3] and 24,25‐dihydroxyvitamin D3 [24,25(OH)2D3] in human urine. The method employed derivatization with 4‐(4‐dimethylaminophenyl)‐1,2,4‐triazoline‐3,5‐dione to convert the glucuronides into fragmentable derivatives, which provided useful product ions for identifying the conjugation positions during the MS/MS. The derivatization also enhanced the assay sensitivity and specificity for urine sample analysis. The positional isomeric monoglucuronides, 25(OH)D3‐3‐ and ‐25‐glucuronides, or 24,25(OH)2D3‐3‐, ‐24‐ and ‐25‐glucuronides, were completely separated from each other under the optimized LC conditions. Using this method, the conjugation positions were successfully determined to be the C3 and C24 positions for the glucuronidated 25(OH)D3 and 24,25(OH)2D3, respectively. The 3‐glucuronide was not present for 24,25(OH)2D3, unlike 25(OH)D3, thus we found that selective glucuronidation occurs at the C24‐hydroxy group for 24,25(OH)2D3.  相似文献   

7.
Vitamin D is an important determinant of bone health at all ages. The plasma concentrations of 25-hydroxy vitamin D (25-OH D) and other metabolites are used as biomarkers for vitamin sufficiency and function. To allow for the simultaneous determination of five vitamin D metabolites, 25-OH D3, 25-OH D2, 24,25-(OH)2 D3, 1,25-(OH)2 D3, and 1,25-(OH)2 D2, in low volumes of human plasma, an assay using ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC-MS/MS) was established. Plasma samples were spiked with isotope-labeled internal standards and pretreated using protein precipitation, solid-phase extraction (SPE) and a Diels–Alder derivatization step with 4-phenyl-1,2,4-triazoline-3,5-dione. The SPE recovery rates ranged from 55% to 85%, depending on the vitamin D metabolite; the total sample run time was <5 min. Mass spectrometry was conducted using positive ion electrospray ionization in the multiple reaction monitoring mode on a quadrupole–quadrupole-linear ion trap instrument after pre-column addition of methylamine to increase the ionization efficiency. The intra- and inter-day relative standard deviations were 1.6–4.1% and 3.7–6.8%, respectively. The limit of quantitation for these compounds was determined to be between 10 and 20 pg/mL. The 25-OH D results were compared with values obtained for reference materials (DEQAS). In addition, plasma samples were analyzed with two additional Diasorin antibody assays. All comparisons with conventional methods showed excellent correlations (r 2 = 0.9738) for DEQAS samples, demonstrating the high degree of comparability of the new UHPLC-MS/MS technique to existing methods.  相似文献   

8.
A sensitive liquid chromatography–electrospray ionization–tandem mass spectrometric (LC–ESI–MS/MS) method for the determination of 25-hydroxyvitamin D3 [25(OH)D3] in human saliva has been developed and validated. The saliva was deproteinized with acetonitrile, purified using a Strata-X cartridge, derivatized with a Cookson-type reagent, 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD), and subjected to LC–MS/MS. The PTAD derivative was much more easily ionized in positive-ESI–MS and efficiently produced a characteristic product ion during MS/MS, compared to the intact 25(OH)D3. Methylamine was used as the mobile phase additive, and also effectively enhanced the assay sensitivity. Quantification was based on selected reaction monitoring, and 25-hydroxyvitamin D4 was used as the internal standard. This method allowed the reproducible and accurate quantification of salivary 25(OH)D3 using a 1.0-ml sample, and the limit of quantitation for 25(OH)D3 was 2.0 pg/ml. The applicability of the developed method for clinical studies was then examined. There was a positive linear relationship (r 2 = 0.830) between the serum 25(OH)D3 level, which is conventionally used as a means of assessing the vitamin D status, and the salivary 25(OH)D3 level measured using the proposed method. The method also enabled the detection of the increase in the salivary 25(OH)D3 level after the supplementation of vitamin D3.  相似文献   

9.
The determination of the urinary vitamin D3 metabolites might prove helpful in the assessment of the vitamin D status. We developed a method for the determination of trace vitamin D3 metabolites, 25-hydroxyvitamin D3 [25(OH)D3] and 24,25-dihydroxyvitamin D3 [24,25(OH)2D3], in urine using liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) combined with derivatization using an ESI-enhancing reagent, 4-(4′-dimethylaminophenyl)-1,2,4-triazoline-3,5-dione (DAPTAD), and its isotope-coded analogue, 2H4-DAPTAD (d-DAPTAD). The urine samples were treated with β-glucuronidase, purified with an Oasis® hydrophilic–lipophilic balanced (HLB) cartridge, and then subjected to the derivatization. The DAPTAD derivatization enabled the highly sensitive detection (detection limit, 0.25 fmol on the column), and the use of d-DAPTAD significantly improved the assay precision [the intra- (n?=?5) and inter-assay (n?=?3) relative standard deviations did not exceed 9.5 %]. The method was successfully applied to urine sample analyses and detected the increases of the urinary 25(OH)D3 and 24,25(OH)2D3 levels due to vitamin D3 administration. Graphical Abstract
Scheme of procedure for urinary vitamin D3 metabolite analysis based on LC/MS/MS with ESI-enhancing and isotope-coded derivatization.  相似文献   

10.
An analytical method was developed for the identification of primary vitamin D3 metabolites in human urine using liquid chromatography tandem mass spectrometry in positive mode. Urine samples were purified using C18 solid-phase extraction cartridges and analytical separations were performed by reversed phase liquid chromatography in gradient mode using ammonium acetate (0.01 mol L?1) and acetonitrile as the mobile phases. Identification and structural elucidation of the metabolites were carried out by comparison with mass spectral fragmentation behavior of vitamin D3 and retention characteristics. Three primary urinary vitamin D3 metabolites were identified as 25-hydroxyvitamin D3, 1α,25-dihydroxyvitamin D3 and vitamin D3 sulphate, respectively.  相似文献   

11.
Milk is an important source of nutrients for various risk populations, including infants. The accurate measurement of vitamin D in milk is necessary to provide adequate supplementation advice for risk groups and to monitor regulatory compliance. Currently used liquid chromatography–tandem mass spectrometry (LC–MS/MS) methods are capable of measuring only four analogues of vitamin D in unfortified milk. We report here an accurate quantitative analytical method for eight analogues of vitamin D: Vitamin D2 and D3 (D2 and D3), 25-hydroxy D2 and D3, 24,25-dihydroxy D2 and D3, and 1,25-dihydroxyD2 and D3. In this study, we compared saponification and protein precipitation for the extraction of vitamin D from milk and found the latter to be more effective. We also optimised the pre-column derivatisation using 4-phenyl-l,2,4-triazoline-3,5-dione (PTAD), to achieve the highest sensitivity and accuracy for all major vitamin D forms in milk. Chromatography was optimised to reduce matrix effects such as ion-suppression, and the matrix effects were eliminated using co-eluting stable isotope labelled internal standards for the calibration of each analogue. The analogues, 25-hydroxyD3 (25(OH)D3) and its epimer (3-epi-25(OH)D3) were chromatographically resolved, to prevent over-estimation of 25(OH)D3. The method was validated and subsequently applied for the measurement of total vitamin D levels in human, cow, mare, goat and sheep milk samples. The detection limits, repeatability standard deviations, and recovery ranges were from 0.2 to 0.4 femtomols, 6.30–13.5%, and 88.2–105%, respectively.  相似文献   

12.
Our investigation of the analysis of vitamin D3 metabolites has been reviewed. The development of high‐performance liquid chromatographic methods for the quantitative determination of 25‐hydroxyvitamin D3 3‐sulfate and 25‐hydroxyvitamin D3, which are the major circulating metabolites of vitamin D3 in human serum/plasma, has been described. The developed methods were applied to the determination of the correlation between the concentration of the sulfate and its genin in healthy subjects and patients with chronic renal failure. The development of immunoaffinity chromatography immobilizing the highly specific anti‐1,25‐dihydroxyvitamin D3 antibody for the pretreatment of radioreceptor assay of 1,25‐dihydroxyvitamin D3, which is the active metabolite of vitamin D3, is also described.  相似文献   

13.
A new method is described for the analysis of vitamin D and its metabolites utilizing thermospray (TSP) mass spectrometry as an on-line detector for high performance liquid chromatography. Ionization conditions were optimized for use with isocratic reversed phase chromatography. TSP mass spectrometry was employed in series with a UV absorbance detector to facilitate comparisons between the two methods of detection. Positive ion TSP mass spectra were recorded for vitamin D2, vitamin D3, 25-hydroxyvitamin D3 (25(OH)D3), 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and 24,25-dihydroxyvitamin D3 (24,25(OH)2D3). The spectra contained protonated molecular ions, ammonium adduct ions and fragment ions due to the loss of one or more molecules of water. A comparison of quantitative precision was made by determining UV absorbance and TSP standard curves for vitamin D3 using two different methods: (1) External standard method with post-column (post UV detector) addition of ammonium acetate. (2) As (1) but using the method of internal standards with a closely eluting internal standard (vitamin D2). In each case the quantitative precision (correlation coefficient) for UV absorbance detection was superior owing to intrinsic instability of the TSP ion beam. A stable isotopically labelled internal standard was employed in the development of an assay for 1,25(OH)2D3. The assay was used to quantify in vitro enzymic conversion of 25(OH)D3 to 1,25(OH)2D3 in guinea pig and sheep renal mitochondrial incubations. TSP LC/MS was also applied to analysis of an extract of human blood plasma in which D3 and each of its principal metabolites were identified in a single analysis.  相似文献   

14.
Vitamin D deficiency in an infant is associated with a wide range of adverse health outcomes in later life. A method for the quantification of 25‐hydroxyvitamin D3 [25(OH)D3, the best‐established indicator of vitamin D status] in neonatal dried blood spots (DBSs) using LC/ESI‐MS/MS has been developed and validated. The method employed two steps of derivatization, a Diels–Alder reaction with 4‐phenyl‐1,2,4‐triazoline‐3,5‐dione followed by acetylation, to enhance the detectability of 25(OH)D3 in ESI‐MS/MS and to separate 25(OH)D3 from 3‐epi‐25‐hydroxyvitamin D3 [3‐epi‐25(OH)D3], a potent interfering metabolite. 25(OH)D3 was extracted from two DBS punches (3 mm in diameter, equivalent to 5.3 μL of whole blood), purified using an Oasis HLB® cartridge, and subjected to derivatization prior to analysis with LC/ESI‐MS/MS. 25‐Hydroxyvitamin D4 was used as the internal standard. This method was reproducible (intra‐ and inter‐assay RSDs, <6.9%) and accurate (analytical recovery, 95.2–102.7%), and the LOQ was 3.0 ng/mL. The developed method enabled specific quantification of 25(OH)D3 in neonatal DBSs and detection of vitamin D deficiency without interference from 3‐epi‐25(OH)D3.  相似文献   

15.
Stereoselective synthesis of (25S)-25-hydroxyvitamin D3 26,23-lactone (1w) is described starting from C-22 steroidal aldehyde and (S)-citramalic acid. The spectral properties of the compound are almost identical with those of the natural product.  相似文献   

16.
Two new vitamin D2 analogues, (22Z)-25-(OH)-D2 and (22Z)-1α,25-(OH)2-D2, were serendipitously synthesized from vitamin D2 and using the Julia-Kocienski olefination.  相似文献   

17.
An almost automated method for the determination of hydroxymetabolites of vitamin D3 (cholecalciferol) in human serum is reported. The method consists of three steps: 1) a batch liquid–liquid extraction step with 2-propanol and hexane, and drying of the extract and reconstitution with phosphate buffer. 2) A cleanup and preconcentration step based on solid-phase extraction using Prospekt equipment, with CN group cartridges and elution with the chromatographic mobile phase. 3) A chromatographic step for individual separation of the target analytes starting with a 90:10 methanol–water mixture, then a linear gradient to obtain 100% methanol; followed by photometric detection. The method provides a linear range between 1.0 and 100 ng mL–1 for 24,25-(OH)2 vitamin D3 and for 25-(OH)2 vitamin D3, and between 1.5 and 100 ng mL–1 for 1,25-(OH) vitamin D3, with correlation coefficients ranging between 0.993 and 0.987, repeatability between 1.9% and 4.8% and within-laboratory reproducibility between 2.8% and 8.8%.  相似文献   

18.
《Tetrahedron letters》1987,28(39):4589-4590
A highly stereoselective synthesis of the side chain of 25-hydroxyvitamin D2 and 1α,25-dihydroxyvitamin D2 is described.  相似文献   

19.
A method for determination of fat-soluble vitamins K(1), K(3), A, D(2), D(3) and E (as alpha- and delta-tocopherol) and metabolites 25-hydroxyvitamin D(2) and D(3) and 1,25-dihydroxyvitamin D(3) in human serum by liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) in positive mode is proposed. Highly selective identification of the target compounds in serum was confirmed by the most representative transitions from precursor ion to product ion. Quantitative MS/MS analysis was carried out by multiple reaction monitoring optimizing the most sensitive transition for each analyte in order to achieve low detection limits (from 0.012 to 0.3 ng/mL estimated with serum). The analysis was performed with 1 mL of serum, which was subjected to protein precipitation, liquid-liquid extraction to an organic phase, evaporation to dryness and reconstitution with methanol. The precision of the overall method ranged from 3.17-6.76% as intra-day variability and from 5.07-11.53% as inter-day variability. The method, validated by the standard addition method, provides complete information on the fat-soluble vitamins profile, which is of interest in clinical and metabolomics studies.  相似文献   

20.
LC-MS/MS is widely utilized today for quantification of vitamin D in biological fluids. Mass spectrometric assays for vitamin D require very careful method optimization for precise and interference-free, accurate analyses however. Here, we explore chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) as a rapid alternative for quantitative measurement of 25-hydroxyvitamin D3 in human serum, and compare it to results from LC-MS/MS. The method implemented an automated imaging step of each MALDI spot, to locate areas of high intensity, avoid sweet spot phenomena, and thus improve precision. There was no statistically significant difference in vitamin D quantification between the MALDI-MS/MS and LC-MS/MS: mean ± standard deviation for MALDI-MS—29.4?±?10.3 ng/mL—versus LC-MS/MS—30.3?±?11.2 ng/mL (P?=?0.128)—for the sum of the 25-hydroxyvitamin D epimers. The MALDI-based assay avoided time-consuming chromatographic separation steps and was thus much faster than the LC-MS/MS assay. It also consumed less sample, required no organic solvents, and was readily automated. In this proof-of-concept study, MALDI-MS readily demonstrated its potential for mass spectrometric quantification of vitamin D compounds in biological fluids.
Graphical Abstract ?
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号