首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
双材料中平片裂纹问题的超奇异积分方程解法   总被引:1,自引:0,他引:1  
利用三维断裂力学的超奇异积分方程方法,对双材料空间中重直于界面的平片裂纹Ⅰ型问题进行了研究。首先根据双材料空间的弹性力学基本解,使用边界积分方程方法,在有限部积分的意义下导出了以裂纹面位罗间断为未知函数的超奇异积分方程,并为其建立了数值法。在此基础上,讨论了用裂纹面位移问题计算应力强度因子的方法。最后用此计算了几个典型的Ⅰ型下片裂纹问题的应力强度因子,其数值结果令人满意。  相似文献   

2.
A classical problem in acoustic (and electromagnetic) scattering concerns the evaluation of the Green’s function for the Helmholtz equation subject to impedance boundary conditions on a half-space. The two principal approaches used for representing this Green’s function are the Sommerfeld integral and the (closely related) method of complex images. The former is extremely efficient when the source is at some distance from the half-space boundary, but involves an unwieldy range of integration as the source gets closer and closer. Complex image-based methods, on the other hand, can be quite efficient when the source is close to the boundary, but they do not easily permit the use of the superposition principle since the selection of complex image locations depends on both the source and the target. We have developed a new, hybrid representation which uses a finite number of real images (dependent only on the source location) coupled with a rapidly converging Sommerfeld-like integral. While our method applies in both two and three dimensions, we restrict the detailed analysis and numerical experiments here to the two-dimensional case.  相似文献   

3.
Nodal integral methods (NIMs) have been developed and successfully used to numerically solve several problems in science and engineering. The fact that accurate solutions can be obtained on relatively coarse mesh sizes, makes NIMs a powerful numerical scheme to solve partial differential equations. However, transverse integration procedure, a step required in the NIMs, limits its applications to brick‐like cells, and thus hinders its application to complex geometries. To fully exploit the potential of this powerful approach, abovementioned limitation is relaxed in this work by first using algebraic transformation to map the arbitrarily shaped quadrilaterals, used to mesh the arbitrarily shaped domain, into rectangles. The governing equations are also transformed. The transformed equations are then solved using the standard NIM. The scheme is developed for the Poisson equation as well as for the time‐dependent convection–diffusion equation. The approach developed here is validated by solving several benchmark problems. Results show that the NIM coupled with an algebraic transformation retains the coarse mesh properties of the original NIM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Green’s functions of a point dislocation as well as a concentrated force for the plane problem of an infinite plane containing an arbitrarily shaped hole under stress, displacement, and mixed boundary conditions are stated. The Green’s functions are obtained in closed forms by using the complex stress function method along with the rational mapping function technique, which makes it possible to deal with relatively arbitrary configurations. The stress functions for these problems consist of two parts: a principal part containing singular and multi-valued terms, and a complementary part containing only holomorphic terms. These Green’s functions can be derived without carrying out any integration. The applications of the Green’s functions are demonstrated in studying the interaction of debonding and cracking from an inclusion with a line crack in an infinite plane subjected to remote uniform tension. The Green’s functions should have many other potential applications such as in boundary element method analysis. The boundary integral equations can be simplified by using the Green’s functions as the kernels.  相似文献   

5.
We consider asymmetric impinging jets issuing from an arbitrary nozzle. The flow is assumed to be two‐dimensional, inviscid, incompressible, and irrotational. The impinging jet from an arbitrary nozzle has a couple of separated infinite free boundaries, which makes the problem hard to solve. We formulate this problem using the stream function represented with a specific single layer potential. This potential can be extended to the surrounding region of the jet flow, and this extension can be proved to be a bounded function. Using this fact, the formulation yields the boundary integral equations on the entire nozzle and free boundary. In addition, a boundary perturbation produces an extraordinary boundary integral equation for the boundary variation. Based on these variational boundary integral equations, we can provide an efficient algorithm that can treat with the asymmetric impinging jets having arbitrarily shaped nozzles. Particularly, the proposed algorithm uses the infinite computational domain instead of a truncated one. To show the convergence and accuracy of the numerical solution, we compare our solutions with the exact solutions of free jets. Numerical results on diverse impinging jets with nozzles of various shapes are also presented to demonstrate the applicability and reliability of the algorithm.  相似文献   

6.
给出了一组只包含Cauchy主值积分、不含有强奇异积分的三维静动力边界积分方程及其应用于裂纹问题的具体列式,并给出了几何轴对称问题的相应半解析边界元求解方法,将三维问题降阶为一维数值问题.文中分析了无限、半无限介质中圆裂纹、平行圆裂纹系、球面裂纹等在静载及应力波作用下的静力或瞬态动力响应问题,求得了相应的应力强度因子.  相似文献   

7.
In this paper, we propose a new boundary integral equation for plane harmonic functions. As a new approach, the equation is derived from the conservation integrals. Every variable in the integral equation has direct engineering interest. When this integral equation is applied to the Dirichlet problem, one will get an integral equation of the second kind, so that the algebraic equation system in the boundary element method has diagonal dominance. Finally, this equation is applied to elastic torsion problems of cylinders of different sections, and satisfactary numerical results are obtained.  相似文献   

8.
An accurate evaluation of strongly singular domain integral appearing in the stress representation formula is a crucial problem in the stress analysis of functionally graded materials using boundary element method.To solve this problem,a singularity separation technique is presented in the paper to split the singular integral into regular and singular parts by subtracting and adding a singular term.The singular domain integral is transformed into a boundary integral using the radial integration method.Analytical expressions of the radial integrals are obtained for two commonly used shear moduli varying with spatial coordinates.The regular domain integral,after expressing the displacements in terms of the radial basis functions,is also transformed to the boundary using the radial integration method.Finally,a boundary element method without internal cells is established for computing the stresses at internal nodes of the functionally graded materials with varying shear modulus.  相似文献   

9.
The slow migration of a small and solid particle in the vicinity of a gas–liquid, fluid–fluid or solid–fluid plane boundary when subject to a gravity or an external flow field is addressed. By contrast with previous works, the advocated approach holds for arbitrarily shaped particles and arbitrary external Stokes flow fields complying with the conditions on the boundary. It appeals to a few theoretically established and numerically solved boundary-integral equations on the particle’s surface. This integral formulation of the problem allows us to provide asymptotic approximations for a distant boundary and also, implementing a boundary element technique, accurate numerical results for arbitrary locations of the boundary. The results obtained for spheroids, both settling or immersed in external pure shear and straining flows, reveal that the rigid-body motion experienced by a particle deeply depends upon its shape and also upon the boundary location and properties.  相似文献   

10.
Within the framework of 2D or 3D linear elasticity, a general approach based on the superposition principle is proposed to study the problem of a finite elastic body with an arbitrarily shaped and located inclusion. The proposed approach consists in decomposing the initial inclusion problem into the problem of the inclusion embedded in the corresponding infinite body and the auxiliary problem of the finite body subjected to the appropriate boundary loading provided by solving the former problem. Thus, our approach renders it possible to circumvent the difficulty due to the unavailability of the relevant Green function, use various existing solutions for the problem of an inclusion inside an unbounded body and clearly makes appear the finite boundary effects. The general approach is applied and specified in the context of 2D isotropic elasticity. The complex potentials for the problem of an inclusion in an infinite body are given as two boundary integrals, and the boundary integral equation governing the complex potentials for the auxiliary problem is provided. In the important particular situation where a finite body with an arbitrarily shaped and located inclusion is circular, the exact explicit expressions for the complex potentials are derived, leading to those for the strain, stress and Eshelby’s tensor fields inside and outside the inclusion. These results are analytically detailed and numerically illustrated for the cases of a square inclusion placed concentrically, and a circular inclusion located eccentrically, inside a circular body.  相似文献   

11.
The 3D contact problem on the action of a punch elliptic in horizontal projection on a transversally isotropic elastic half-space is considered for the case in which the isotropy planes are perpendicular to the boundary of the half-space. The elliptic contact region is assumed to be given (the punch has sharp edges). The integral equation of the contact problem is obtained. The elastic rigidity of the half-space boundary characterized by the normal displacement under the action of a given lumped force significantly depends on the chosen direction on this boundary. In this connection, the following two cases of location of the ellipse of contact are considered: it can be elongated along the first or the second axis of Cartesian coordinate system on the body boundary. Exact solutions are obtained for a punch with base shaped as an elliptic paraboloid, and these solutions are used to carry out the computations for various versions of the five elastic constants. The structure of the exact solution is found for a punch with polynomial base, and a method for determining the solution is proposed.  相似文献   

12.
We consider the equilibrium problem for an elastic incompressible half-space weakened by two near-surface wedge-like cracks, whose lie in the same plane perpendicular to the half-space surface and have a common vertex. We use the Papkovich-Neuber representation to reduce the problem to finding two harmonic functions satisfying the mixed boundary conditions. These functions are constructed in spherical coordinates by using a Mehler-Fock type integral representation in Legendre functions. The analytic solution thus obtained permits finding the character of the stress distribution near the common tip of the cracks.  相似文献   

13.
IntroductionConcerningtheelasticplaneprobleminaunitcircle ,ZhengShenzhouandZhengXueliangdevelopedaboundaryintegralformulaofthestressfunction[1]:Φ(r,θ) =-( 1 -r2 ) 24π ∫2π0ν( φ)1 -2rcos(θ-φ) r2 dφ   12π∫2π011 -2rcos(θ-ω) r2 dω∫2π0μ( φ)1 -cos(ω-φ) dφ   1 -r22π∫2π0μ( φ)1 -2rcos(θ -φ) r2 dφ   ( 0 ≤r <1 ) ,( 1 )whereμ(θ) =Φ(r,θ) |r=1,ν(θ) = Φ n r=1= Φ r r=1.Intheformula ( 1 )theseconditemisastrongsingularintegral,itshouldbeunderstoodasanintegra…  相似文献   

14.
考虑力-电-磁-热等多场耦合作用, 基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析, 并得到了问题的解析解. 利用Hankel 积分变换法求解了磁-电-弹性材料中的热传导及控制方程, 讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题, 利用积分变换和积分方程技术, 通过在边界表面上施加应力自由及磁-电开路条件, 推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式. 获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力, 电位移和磁通量的解析解. 数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响. 当温度载荷作用的圆域半径增大时, 最大正应力发生的位置会远离半无限大体的边界; 反之当温度载荷作用的圆域半径减小时, 最大应力发生的位置会靠近半无限大体的边界. 电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化, 而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关. 本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.  相似文献   

15.
考虑力-电-磁-热等多场耦合作用, 基于线性理论给出了磁-电-弹性半空间在表面轴对称温度载荷作用下的热-磁-电-弹性分析, 并得到了问题的解析解. 利用Hankel 积分变换法求解了磁-电-弹性材料中的热传导及控制方程, 讨论了在磁-电-弹性半空间在边界表面上作用局部热载荷时的混合边值问题, 利用积分变换和积分方程技术, 通过在边界表面上施加应力自由及磁-电开路条件, 推导得到了磁-电-弹性半空间中位移、电势及磁势的积分形式的表达式. 获得了磁-电-弹性半空间中温度场的解析表达式并且给出了应力, 电位移和磁通量的解析解. 数值计算结果表明温度载荷对磁-电-弹性场的分布有显著影响. 当温度载荷作用的圆域半径增大时, 最大正应力发生的位置会远离半无限大体的边界; 反之当温度载荷作用的圆域半径减小时, 最大应力发生的位置会靠近半无限大体的边界. 电场和磁场在温度载荷作用的圆域内在边界表面附近有明显的强化, 而磁-电-弹性场强化区域的强化程度跟温度载荷的大小和作用区域大小相关. 本研究的相关结果对智能材料和结构在热载荷作用下的设计和制造具有指导意义.   相似文献   

16.
This paper presents the fundamental contact solutions of a magneto-electro-elastic half-space indented by a smooth and rigid half-infinite punch. The material is assumed to be transversely isotropic with the symmetric axis perpendicular to the surface of the half-space. Based on the general solutions, the generalized method of potential theory is adopted to solve the boundary value problems. The involved potentials are properly assumed and the corresponding boundary integral equations are solved by using the results in literature. Complete and exact fundamental solutions are derived case by case, in terms of elementary functions for the first time. The obtained solutions are of significance to boundary element analysis, and an important role in determining the physical properties of materials by indentation technique can be expected to play.  相似文献   

17.
The scattering problem of elastic wave by arbitrarily shaped cavities in an infinite anisotropic medium is investigated by the boundary integral equation (BIE) method. The formulations of BIE are derived with the help of generalized Green's formula. The discretization of BIE is based upon constant elements. After confirmation of the accuracy of the present method, some numerical examples are given for various cavities in a full space, in which an isotropic body with a circular cylinder hole is used for comparison and good agreement is observed. It has been proved that the method developed in this paper is effective.  相似文献   

18.
本文针对板弯曲边界元方法中计算边界曲率等高阶导数项时边界积分方程中出现的高阶奇异积分项,通过对未知挠曲函数作渐近展开并加以适当摄动,获得了渐近收敛的边界积分方程。采用这一方法计算板边界上的曲率分布,获得了满意的数值结果。  相似文献   

19.
A rigorous theory of the scattering and excitation of SH-surface waves by a protrusion at the mass-loaded boundary of an elastic half-space is presented. The boundary value problem (which is of the third kind) is solved by employing two suitably chosen Green functions. One of them is represented as a Fourier type of integral, the other is taken to be the Bessel function of the second kind and order zero. The procedure leads to a system of three, coupled, integral equations. This system is solved numerically. In case of an incident bulk wave, the amplitude of the launched surface wave is computed; in case of an incident surface wave, its transmission and reflection factor are computed. For both cases, an expression for the far-field radiation pattern of the scattered bulk wave is derived. A reciprocity relation is shown to exist between the amplitude of the launched surface wave and the far-field bulk wave radiation pattern. Numerical results are presented for a triangularly-prismatic protrusion; they are compared with the results pertaining to a corresponding indentation in the mass-loaded boundary, that have been obtained in a previous paper.  相似文献   

20.
The solution of a dynamic problem for calculation of a displacement field on a half-space surface caused by an internal mode I crack opening is presented. The problem is reduced to the system of boundary integral equations (BIEs). The equations of motion are solved with the use of Helmholtz potentials and applying Fourier integral transform. The effects of the crack size, the crack depth and the distance from the crack epicenter to the observation point on the parameters of elastic waves are investigated. It is established that the increasing of the defect size leads to narrowing bandwidth of elastic waves and to lowering of center frequency. The analysis given here can be used for identification of the crack growth during technical diagnostic of an industry objects and structural elements by AE method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号