首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We study the effect of monolayer quality on the electrical transport through n-Si/C(n)H(2n+1)/Hg junctions (n = 12, 14, and 18) and find that truly high quality layers and only they, yield the type of data, reported by us in Phys. Rev. Lett. 2005, 95, 266807, data that are consistent with the theoretically predicted behavior of a Schottky barrier coupled to a tunnel barrier. By using that agreement as our starting point, we can assess the effects of changing the quality of the alkyl monolayers, as judged from ellipsometer, contact angle, XPS, and ATR-FTIR measurements, on the electrical transport. Although low monolayer quality layers are easily identified by one or more of those characterization tools, as well as from the current-voltage measurements, even a combination of characterization techniques may not suffice to distinguish between monolayers with minor differences in quality, which, nevertheless, are evident in the transport measurement. The thermionic emission mechanism, which in these systems dominates at low forward bias, is the one that is most sensitive to monolayer quality. It serves thus as the best quality control. This is important because, even where tunneling characteristics appear rather insensitive to slightly diminished quality, their correct analysis will be affected, especially if layers of different lengths are also of different quality.  相似文献   

2.
The design of silicon/alkyl layer/metal junctions for the formation of optimal top metal contacts requires knowledge of the mechanistic and energetic aspects of the interactions of metal atoms with the modified surface. This involves (a) the interaction of the metal with the terminal groups of the organic layer, (b) the diffusion of metal atoms through the organic layer and (c) the reactions of metal atoms with the silicon surface atoms. The diffusion through the monolayer and the metal catalyzed breakage of Si-C bonds must be avoided to obtain high quality junctions. In this work, we performed a comprehensive density functional theory investigation to identify the reaction pathways of all these processes. In the absence of a reactive terminal group, gold atoms may penetrate through a compact alkyl monolayer on Si(111) with no energy barrier. However, the presence of thiol terminal groups introduces a high energy barrier which blocks the diffusion of metals into the monolayer. The diffusion barriers increase in the order Ag < Au < Cu and correlate with the stability of metal-thiolate complexes whereas the barriers for the formation of metal silicides increase in the order Cu < Au < Ag in correlation with the increasing metallic radii. The reactivity of gold clusters with functionalized Si(111) surfaces was also investigated. Metal silicide formation can only be avoided by a compact monolayer terminated by a reactive functional group. The mechanistic and energetic picture obtained in this work contributes to understanding of the factors that influence the quality of top metal contacts during the formation of silicon/organic layer/metal junctions.  相似文献   

3.
The adsorption of a range of organic molecules from toluene onto the oxidized surface of magnetron‐sputtered aluminium metal is studied using sessile drop water contact angle measurements. Molecules with different head group functionalities and various chain lengths are considered, including alkyl carboxylic acids, alkyl phosphonic acids, alkyl amines, alkyl trimethoxysilanes, alkyl trichlorosilanes and epoxy alkanes. Alkyl phosphonic and carboxylic acids are identified as readily forming the most well‐packed monolayers on the aluminium surface, whereas the others adsorb less well and the chlorosilanes polymerize as a result of combination with moisture to form a thick deposit. The high‐adsorption‐density monolayers of alkyl phosphonic and carboxylic acids were studied using polarization modulation infrared reflection–absorption spectroscopy (PM‐IRRAS) and x‐ray photoelectron spectroscopy (XPS): PM‐IRRAS reveals relatively poorer ordering of the C10 alkyl carboxylic acid monolayer compared with that formed from the phosphonic acid, and XPS data suggest that this is likely to relate to a lower ability to displace preadsorbed volatile organic compounds. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
FTIR spectroscopy of buried interfaces in molecular junctions   总被引:1,自引:0,他引:1  
We demonstrate that ATR-FTIR spectroscopy can be used to record high-quality vibrational spectra of molecules at buried interfaces in metal-molecule-silicon and metal-molecule-metal junctions. This provides quantitative information on the structure and conformation of molecules at buried interfaces, an issue of critical importance to molecular electronics. In the model systems of Au on octadecyltrichlorosilane self-assembled monolayer on Si or mecaptohexadecanoic acid multilayers on Au-covered Si, ATR-FTIR suggests that metal deposition leads to not only conformational disorder within the film but also the direct interaction of metal atoms/clusters with alkyl backbones.  相似文献   

5.
Alkyl organic monolayers with different alkyl molecular chain lengths directly attached to silicon were prepared at 160 degrees C from 1-decene (C10), 1-dodecene (C12), 1-tetradecene (C14), 1-hexadecene (C16), and 1-octadecene (C18). These monolayers were characterized on the basis of water contact angle measurement, ellipsometry, X-ray reflectivity (XR), X-ray photoelectron spectroscopy (XPS), and grazing incidence X-ray diffraction (GIXD) to elucidate the effect of the molecular chain length on the molecular arrangement and packing density of the monolayers. Water contact angle and XPS measurements showed that C12, C14, and C16 monolayers have a comparably higher quality, while the quality of C10 and C18 monolayers is worse. GIXD revealed that the alkyl monolayers directly attached to the Si were all amorphously structured regardless of their alkyl chain length. The amorphous structure of the alkyl monolayers could be attributed to the rigid Si-C bonding, low quality of hydrogen-terminated silicon substrate, and/or low mobility of physisorbed molecules.  相似文献   

6.
The synthesis and structure of a dipolar nonlinear optical bis(salicylaldiminato)Ni(II)-derivatized Schiff base complex chemisorbed on H-terminated Si(100) surfaces is reported. The existence of a monolayer of the derivatized complex chemisorbed on the Si(100) surface is unambiguously confirmed by high-resolution core-level XPS and AFM/SNOM analyses. The comparison between the optical SNOM images highlights the contribution of the monolayer to the local reflectivity of the sample. Angle-resolved XPS data indicate the presence of chlorine head atoms on the monolayer surface. Altogether, XPS and AFM/SNOM data suggest the formation of a nanoscale uniform, homogeneous, complete, ordered monolayer self-assembled on the Si(100) surface.  相似文献   

7.
Crystalline Si(111) surfaces have been alkylated in a two-step chlorination/alkylation process using sterically bulky alkyl groups such as (CH3)2CH- (iso-propyl), (CH3)3C- (tert-butyl), and C6H5- (phenyl) moieties. X-ray photoelectron spectroscopic (XPS) data in the C 1s region of such surfaces exhibited a low energy emission at 283.9 binding eV, consistent with carbon bonded to Si. The C 1s XPS data indicated that the alkyls were present at lower coverages than methyl groups on CH(3)-terminated Si(111) surfaces. Despite the lower alkyl group coverage, no Cl was detected after alkylation. Functionalization with the bulky alkyl groups effectively inhibited the oxidation of Si(111) surfaces in air and produced low (<100 cm s(-1)) surface recombination velocities. Transmission infrared spectroscopy indicated that the surfaces were partially H-terminated after the functionalization reaction. Application of a reducing potential, -2.5 V vs Ag+/Ag, to Cl-terminated Si(111) electrodes in tetrahydrofuran resulted in the complete elimination of Cl, as measured by XPS. The data are consistent with a mechanism in which the reaction of alkyl Grignard reagents with the Cl-terminated Si(111) surfaces involves electron transfer from the Grignard reagent to the Si, loss of chloride to solution, and subsequent reaction between the resultant silicon radical and alkyl radical to form a silicon-carbon bond. Sites sterically hindered by neighboring alkyl groups abstract a H atom to produce Si-H bonds on the surface.  相似文献   

8.
Single-crystal Si(100) surfaces have been functionalized by using a two-step radical chlorination-Grignard (R = MgCl, R = CH3, C2H5, C4H9, C6H5, or CH2C6H5) alkylation method. After alkylation, no chlorine was detectable on the surface by X-ray photoelectron spectroscopy (XPS), and the C 1s region showed a silicon-induced peak shift indicative of a Si-C bond. The relative intensity of this peak decreased, as expected, as the steric bulk of the alkyl increased. Despite the lack of full alkyl termination of the atop sites of the Si(100) surface, functionalization significantly reduced the rate of surface oxidation in air compared to that of the H-terminated Si(100) surface, with alkylated surfaces forming less than half a monolayer of oxide after over one month of exposure to air. Studies of the charge-carrier lifetime with rf photoconductivity decay methods indicated a surface recombination velocity of <30 cm s(-1) for methylated surfaces, and <60 cm s(-1) for Si surfaces functionalized with the other alkyl groups evaluated. Soft X-ray photoelectron spectroscopic data indicated that the H-Si(100) surfaces were terminated by SiH, SiH2, and SiH3 species, whereas Cl-Si(100) surfaces were predominantly terminated by monochloro (SiCl and SiHCl) and dichloro (SiCl2 and SiHCl2) Si species. Methylation produced signals consistent with termination by Si-alkyl bonding arising from SiH(CH3)-, SiH2(CH3)-, and Si(CH3)2-type species.  相似文献   

9.
The thermal stability of perfluoralkylsiloxane monolayers in a vacuum is investigated via X-ray photoelectron spectroscopy (XPS) for temperatures up to 600 degrees C. 1H,1H,2H,2H,-perfluorodecyltrichlorosilane (FDTS) monolayers are deposited on oxidized Si(100) surfaces from the vapor phase with various degrees of surface coverage. Significant monolayer desorption is observed to occur at temperatures below 300 degrees C regardless of the initial monolayer coverage. The desorption mechanism follows first-order kinetics and is independent of the initial coverage. Removal of FDTS is found to occur by the loss of the entire molecular chain, as evidenced by the fact that the CF(3)/CF(2) peak area ratios remain unaffected by the annealing process although CF(n)()/Si peak ratio declines with annealing. This is in sharp contrast to the behavior observed for octadecyltrichlorosilane monolayer for which elevated temperature leads to C-C bond breakage and successive shortening of the alkyl chain. It is also shown that the binding energy and the shape of the F 1s line are good indicators of the degree of disorder in the chain, as well as a measure of the interaction of the chain with the silicon surface.  相似文献   

10.
In this work, we present the behavior of solid monolayers of binary mixtures of alkanes and alcohols adsorbed on the surface of graphite from their liquid mixtures. We demonstrate that solid monolayers form for all the combinations investigated here. Differential scanning calorimetry (DSC) is used to identify the surface phase behavior of these mixtures, and elastic neutron incoherent scattering has been used to determine the composition of the mixed monolayers inferred by the calorimetry. The mixing behavior of the alcohol/alkane monolayer mixtures is compared quantitatively with alkane/alkane and alcohol/alcohol mixtures using a regular solution approach to model the incomplete mixing in the solid monolayer with preferential adsorption determining the surface composition. This analysis indicates the preferential adsorption of alcohols over alkanes of comparable alkyl chain length and even preferential adsorption of shorter alcohols over longer alkanes, which contrasts strongly with mixtures of alkane/alkane and alcohol/alcohol of different alkyl chain lengths where the longer homologue is always found to preferentially adsorb over the shorter. The alcohol/alkane mixtures are all found to phase separate to a significant extent in the adsorbed layer mixtures even when molecules are of a similar size. Again, this contrasts strongly with alkane/alkane and alcohol/alcohol mixtures where, although phase separation is found for molecules of significantly different size, good mixing is found for similar size species.  相似文献   

11.
《Chemphyschem》2003,4(4):335-342
To understand the electrical properties at passivated metal–semiconductor interfaces, two types of mercury–insulator–silicon (n‐type) junctions, Hg|C10H21? Si and Hg|SiO2? Si, were fabricated and their current–voltage and capacitance–voltage characteristics compared. Both of them exhibited near‐ideal rectifying characteristics with an excellent saturation current at reverse bias, which is in contrast to the previously reported ohmic behavior of an unmodified mercury–silicon junction. The experimental results also indicated that the n‐decyl monolayer passivated junction possesses a higher effective barrier height, a lower ideality factor (that is, closer to unity), and better reproducibility than that of native silicon oxide. In addition, the dopant density and build‐in potential, extracted from capacitance–voltage measurements of these passivated mercury–silicon junctions, revealed that alkyl monolayer derivatization does not alter the intrinsic properties of the silicon substrate. The calculated surface state density at the alkyl monolayer|silicon interface is lower than that of the silicon oxide|silicon interface. The present study increases the possibility of using advanced organic materials as ultrathin insulator layers for miniaturized, silicon‐based microelectronic devices.  相似文献   

12.
The structure of twelve-carbon monolayers on the H-terminated Si(111) surface is investigated by molecular simulation method. The best substitution percent on Si(111) surface obtained via molecular mechanics calculation is equal to 50%, and the (8 ε 8) simulated cell can be used to depict the structure of alkyl monolayer on Si surface. After two-dimensional cell containing alkyl chains and four-layer Si(111) crystal at the substitution 50% is constructed, the densely packed and well-ordered monolayer on Si(111) surface can be shown through energy minimization in the suitable-size simulation cell. These simulation results are in good agreement with the experiments. These conclusions show that molecular simulation can provide otherwise inaccessible mesoscopic information at the molecular level, and can be considered as an adjunct to experiments.  相似文献   

13.
The structure of twelve-carbon monolayers on the H-terminated Si(111) surface is investigated by molecular simulation method. The best substitution percent on Si(111) surface obtained via molecular mechanics calculation is equal to 50%, and the (8×8) simulated cell can be used to depict the structure of alkyl monolayer on Si surface. After two-dimensional cell containing alkyl chains and four-layer Si(111) crystal at the substitution 50% is constructed, the densely packed and well-ordered monolayer on Si(111) surface can be shown through energy minimization in the suitable-size simulation cell. These simulation results are in good agreement with the experiments. These conclusions show that molecular simulation can provide otherwise inaccessible mesoscopic information at the molecular level, and can be considered as an adjunct to experiments.  相似文献   

14.
The preparation of monolayers on silicon surface is of growing interest for potential applica-tions in biosensor or semiconductor technology[1—5]. The alkyl modified Si(111) surfaces[6—10] can be obtained using the thermal, catalyzed, or photochemical reaction of hydrogen-terminated sili-con with alkenes, Grignard reagents, and so on. At the same time, the monolayer properties on Si(111) surface have been studied by a variety of experimental methods[8—10] such as X-ray photo-electron spect…  相似文献   

15.
The structure of an octadecyl monolayer formed on a hydrogen-terminated Si(111) surface in neat octadecene was studied by infrared-visible sum frequency generation (SFG) spectroscopy. The SFG spectra in the CH vibration region were dominated by peaks corresponding to those of the methyl group, confirming that the monolayer is essentially in the all-trans conformation. The shapes of the spectra were strongly dependent on the azimuthal angle, and the strength of the asymmetric vibration mode obtained from the theoretical fitting shows threefold symmetry with respect to the azimuthal angle, suggesting the epitaxial arrangement of the monolayer with the Si(111) substrate. The orientation angle of the methyl group estimated from SFG anisotropy was in good agreement with the theoretical prediction.  相似文献   

16.
This communication presents the first functionalization of a hydrogen-terminated silicon-rich silicon nitride (Si3Nx) surface with a well-defined, covalently attached organic monolayer. Properties of the resulting monolayers are monitored by measurement of the static water contact angle, X-ray photoelectron spectroscopy (XPS), and infrared reflection absorption spectroscopy (IRRAS). Further functionalization was performed by reaction of Si3Nx with a trifluoroethanol ester alkene (CH2=CH-(CH2)8CO2CH2CF3) followed by basic hydrolysis to afford the corresponding carboxylic acid-terminated monolayer with hydrophilic properties. These results show that Si3Nx can be functionalized with a tailor-made organic monolayer, has highly tunable wetting properties, and displays significant potential for further functionalization.  相似文献   

17.
Self-assembled monolayers formed by thermal hydrosilylation of a trifluoroacetyl-protected alkenylthiol on Si-H surfaces, followed by removal of the protecting groups, yield essentially oxide-free monolayers suitable for the formation of Si-C11H22-S-Hg and Si-C11H22-S-Au junctions in which the alkyl chains are chemically bound to the silicon surface (via Si-C bonds) and the metal electrode (via Hg-S or Au-S bonds). Two barriers to charge transport are present in the system: at low bias the current is temperature activated and hence limited by thermionic emission over the Schottky barrier in the silicon, whereas as at high bias transport is limited by tunneling through the organic monolayer. The thiol-terminated monolayer on oxide-free silicon provides a well-characterized system allowing a careful study of the importance of the interfacial bond to the metal electrode for current transport through saturated molecules.  相似文献   

18.
We present an overview of various aspects of the self-assembly of organic monolayers on silicon substrates for molecular electronics applications. Different chemical strategies employed for grafting the self-assembled monolayers (SAMs) of alkanes having different chain lengths on native oxide of Si or on bare Si have been reviewed. The utility of different characterization techniques in determination of the thickness, molecular ordering and orientation, surface coverage, growth kinetics and chemical composition of the SAMs has been discussed by choosing appropriate examples. The metal counterelectrodes are an integral part of SAMs for measuring their electrical properties as well as using them for molecular electronic devices. A brief discussion on the variety of options available for the deposition of metal counterelectrodes, that is, soft metal contacts, vapor deposition and soft lithography, has been presented. Various theoretical models, namely, tunneling (direct and Fowler-Nordheim), thermionic emission, Poole-Frenkel emission and hopping conduction, used for explaining the electronic transport in dielectric SAMs have been outlined and, some experimental data on alkane SAMs have been analyzed using these models. It has been found that short alkyl chains show excellent agreement with tunneling models; while more experimental data on long alkyl chains are required to understand their transport mechanism(s). Finally, the concepts and realization of various molecular electronic components, that is, diodes, resonant tunnel diodes, memories and transistors, based on appropriate architecture of SAMs comprising of alkyl chains (sigma- molecule) and conjugated molecules (pi-molecule) have been presented.  相似文献   

19.
Hydrogen-terminated, chlorine-terminated, and alkyl-terminated crystalline Si(111) surfaces have been characterized using high-resolution, soft X-ray photoelectron spectroscopy from a synchrotron radiation source. The H-terminated Si(111) surface displayed a Si 2p(3/2) peak at a binding energy 0.15 eV higher than the bulk Si 2p(3/2) peak. The integrated area of this shifted peak corresponded to one equivalent monolayer, consistent with the assignment of this peak to surficial Si-H moieties. Chlorinated Si surfaces prepared by exposure of H-terminated Si to PCl5 in chlorobenzene exhibited a Si 2p(3/2) peak at a binding energy of 0.83 eV above the bulk Si peak. This higher-binding-energy peak was assigned to Si-Cl species and had an integrated area corresponding to 0.99 of an equivalent monolayer on the Si(111) surface. Little dichloride and no trichloride Si 2p signals were detected on these surfaces. Silicon(111) surfaces alkylated with CnH(2n+1)- (n = 1 or 2) or C6H5CH2- groups were prepared by exposing the Cl-terminated Si surface to an alkylmagnesium halide reagent. Methyl-terminated Si(111) surfaces prepared in this fashion exhibited a Si 2p(3/2) signal at a binding energy of 0.34 eV above the bulk Si 2p(3/2) peak, with an area corresponding to 0.85 of a Si(111) monolayer. Ethyl- and C6H5CH2-terminated Si(111) surfaces showed no evidence of either residual Cl or oxidized Si and exhibited a Si 2p(3/2) peak approximately 0.20 eV higher in energy than the bulk Si 2p(3/2) peak. This feature had an integrated area of approximately 1 monolayer. This positively shifted Si 2p(3/2) peak is consistent with the presence of Si-C and Si-H surface functionalities on such surfaces. The SXPS data indicate that functionalization by the two-step chlorination/alkylation process proceeds cleanly to produce oxide-free Si surfaces terminated with the chosen alkyl group.  相似文献   

20.
We compare the low-temperature electron transport properties of alkyl monolayers which utilize different attachment strategies to gold. Inelastic electron tunneling spectroscopy (IETS) and current-voltage analysis were performed on molecular junctions incorporating alkyl-dithiocarbamate and alkanethiolate self-assembled monolayers of similar length. Alkyl-dithiocarbamate monolayers were formed by the condensation of dioctylamine or didecylamine with carbon disulfide in anhydrous ethanol and compared to alkanethiolate SAMs of 1-decanethiol and 1-dodecanethiol, respectively. The electron transport properties of each monolayer were examined using magnetically assembled microsphere junctions under high-vacuum conditions at low temperature. IETS was employed to differentiate the films on the basis of vibrational modes which are characteristic of each method of attachment. We use quantum chemical simulations of model compounds to calculate frequency and intensity of predicted signals arising from molecular vibrations to aid in the accurate assignment of the spectra. A qualitative comparison of our devices also reveals an increase in current density when utilizing dithiocarbamate attachment to gold compared to alkanethiolate molecules of similar length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号