首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of carbazole-dendronized tris(2,4,6-trichlorophenyl)methyl (TTM) radicals have been synthesized. The photophysical properties of dendronized radicals up to the fourth generation were compared systematically to understand how structure–property relationships evolve with generation. The photoluminescence quantum yield (PLQY) was found to increase with the increasing generation, and the fourth generation (G4TTM) in cyclohexane solution showed a PLQY as high as 63 % at a wavelength of 627 nm (in the deep-red region) from the doublet state. The dendron modification strategy also showed a blue-shift of the emission on increasing the generation number, and the photostability was also increased compared to the bare TTM radical.  相似文献   

2.
The novel laser jet technique provides sufficiently high photon densities to permit the observation of the photochemistry of photochemically generated radicals (two-photon chemistry) in the liquid phase. Four recent applications of this novel photochemically useful method are presented: these include the photochemistry of hydroxydiphenylmethyl, 9-hydroxyxanthenyl, diphenylmethyl, and benzoyl radicals under laser jet and normal photolysis conditions.

The regioselectivity of cross-coupling reactions of hydroxydiphenylmethyl or 9-hydroxyxanthenyl radicals with solvent-derived radicals changes when these species are electronically excited,i.e. under the high intensity conditions of the laser jet, cross-coupling at the para position (head-to-tail combination) is significantly enhanced relative to the normal coupling mode at the hydroxy-bearing radical site (head-to-head combination). Semiempirical calculations of the spin density distributions for the ground and first excited states of the radicals confirm the change in spin density from the hydroxy-bearing carbon atom to the conjugating benzene rings in these radical species on photoexcitation.

For the diphenylmethyl radical, two reaction pathways have been observed under the high photon densities of the laser jet: the electronically excited diphenylmethyl radical can either abstract a chlorine atom from carbon tetrachloride through an electron transfer process or can be photoionized on further photoexcitation (multiphoton chemistry). The resulting benzhydryl cation was trapped by methanol as the corresponding ether product, which unequivocally demonstrates that carbene formation by photoejection of a hydrogen atom does not take place under laser jet photolysis conditions.

An advantage of the high photon densities produced in laser jet photolysis is the high steady state concentration of short-lived transients that are generated, which enable unprecedented intermolecular reactions to be observed. Thus, about a millimolar concentration of tert-butoxy radicals can be obtained in the laser jet photocleavage of tert-butyl peroxide. When the tert-butoxy radicals are produced in the presence of benzaldehyde, the main product is tert-butyl benzoate. If carbon tetrachloride is also present, chlorobenzene can be detected. This is rationalized as the product derived from chlorine abstraction by phenyl radicals, which are presumably produced by the photodecarbonylation of benzoyl radicals.

An alternative method of obtaining benzoyl radicals is the two-photon cleavage of benzil. The laser jet photolysis of benzil in tert-butyl peroxide yields mainly tert-butyl benzoate, whereas in carbon tetrachloride, benzoyl chloride, chlorobenzene and ,,-trichloroacetophenone are observed. The first two products result from chlorine atom abstraction by the photochemically generated benzoyl and phenyl radicals, and the last product from in-cage cross-coupling between benzoyl and trichloromethyl radicals.

Such product studies provide detailed mechanistic information on the photochemical behaviour of electronically excited, short-lived transients which complements nicely the kinetic and spectral data of time-resolved laser flash studies. Consequently, the laser jet technique constitutes a valuable tool for determining the mechanism of two- photon reactions.  相似文献   


3.
The presence of a chalcogen atom at the ortho-position of phenols enhances their radical chain-breaking activity. Here, a copper(I)-catalyzed reaction of 2,6-dibromo- and 2,6-diiodophenols with diorganodiselenides has been studied for the introduction of two organoselenium substituents at both ortho-positions of the phenolic radical chain-breaking antioxidants, which afforded 2,6-diorganoseleno-substituted phenols in 80–92% yields having electron-donating CH3, and electron-withdrawing CN and CHO functionalities. Additionally, 2,6-diiodophenols with electron-withdrawing CHO and CN groups also afforded novel 5,5′-selenobis(4-hydroxy-3-(phenylselanyl)benzaldehyde) and 5,5′-selenobis(4-hydroxy-3-(phenylselanyl)benzonitrile) consisting of three selenium and two phenolic moieties along with 2,6-diorganoseleno-substituted phenols has been synthesized. The electron-withdrawing CHO group has been reduced by sodium borohydride to the electron-donating alcohol CH2OH group, which is desirable for efficient radical quenching activity of phenols. The developed copper-catalyzed reaction conditions enable the installation of two-arylselenium group ortho to phenolic radical chain-breaking antioxidants, which may not be possible by conventional organolithium-bromine exchange methods due to the sluggish reactivity of trianions (dicarba and phenoxide anion), which are generated by the reaction of organolithium with 2,6-dibromophenols, with diorganodiselenides. The antioxidant activities of the synthesized bis and tris selenophenols have been accessed by DPPH, thiol peroxides, and singlet oxygen quenching assay. The radical quenching antioxidant activity has been studied for the synthesized compounds by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The bis-selenophenols show comparable radical deactivating activity, while tris seleno-bisphenols show higher radical deactivating activity than α-tocopherol. Furthermore, the tris seleno-bisphenol shows comparable peroxide decomposing activity with ebselen molecules.  相似文献   

4.
Cu (II) complexes with 3,5-di(tert-butyl)-1,2-benzenediol (I), 4,6-di(tert-butyl)-1,2,3-benzentriol (II) and sulfur-containing sterically hindered o-diphenol derivatives such as 4,6-di(tert-butyl)-3-(2-hydroxyethylsulfanyl)-1,2-benzenediol (III) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (IV) have been synthesized and characterized by means of elemental analysis, TG/DTA, FT-IR, ESR, XPS, XPD and conductivity measurements. Antifungal activities of these ligands and their respective Cu (II) complexes have been determined against Aspergillus niger, Fusarium sp., Penicillium lividum, Mucor sp. and Botrytis cinerea. Most of the compounds (both the free ligands and the complexes) exert pronounced antifungal activities (RI  70%), and virtually all of them (apart from the Cu(LII)2 complex) have the highest inhibitory properties (RI = 100%) against B. cinerea.  相似文献   

5.
Red luminescence is found in off-white tris(iodoperchlorophenyl)methane ( 3I-PTMH ) crystals which is characterized by a high photoluminescence quantum yield (PLQY 91 %) and color purity (CIE coordinates 0.66, 0.34). The emission originates from the doublet excited state of the neutral radical 3I-PTMR , which is spontaneously formed and becomes embedded in the 3I-PTMH matrix. The radical defect can also be deliberately introduced into 3I-PTMH crystals which maintain a high PLQY with up to 4 % radical concentration. The immobilized iodinated radical demonstrates excellent photostability (estimated half-life >1 year under continuous irradiation) and intriguing luminescent lifetime (69 ns). TD-DFT calculations demonstrate that electron-donating iodine atoms accelerate the radiative transition while the rigid halogen-bonded matrix suppresses the nonradiative decay.  相似文献   

6.
This paper describes the synthesis of the novel bis[4-(N-carbazolyl)-2,6-dichlorophenyl](2,4,6-trichlorophenyl)methyl radical (2*) and tris[4-(N-carbazolyl)-2,6-dichlorophenyl]methyl radical (3*). A Friedel-Crafts reaction on [4-(N-carbazolyl)-2,6-dichlorophenyl)bis(2,4,6-trichlorophenyl]methyl radical (1*), 2*, and 3* leads to the introduction of acyl chains in the 3- and 6-positions of the carbazolyl moiety without impairment of the radical character of the molecule to give radicals 5*, 6*, and 7*. All of these novel radical adducts are thermally stable, 5* and 6* being amorphous solids by differential scanning calorimetry. Electron paramagnetic resonance spectra of them show a multiplet at low temperature due to the electron-coupling with six aromatic hydrogens. They show electrochemical amphotericity being reduced and oxidized to their corresponding stable anionic and cationic species, respectively. These radical adducts have luminescent properties covering the red spectral band of the emission with high intensities.  相似文献   

7.
The incorporation of organic radicals into coordination polymers was considered as a promising strategy to promote metal-ligand exchange interactions, but there are only a very limited number of stable organic radical-based ligands that can serve well such a purpose. Herein, we report two new tris(2,4,6-trichlorophenyl)methyl (TTM) radical-based ligands L1 and L2 with two and three imidazole substituents, respectively. The imidazole unit serves as a coordination site and it can also stabilize the TTM radical by intramolecular donor–acceptor interaction. Coordination of L1 and L2 with cobalt(II) ions gave the corresponding one- ( CoCP - 1 ) and two-dimensional ( CoCP - 2 ) coordination polymers, the structures of which were confirmed by X-ray crystallographic analysis. Magnetic measurements and theoretical calculations suggest antiferromagnetic coupling between the paramagnetic cobalt(II) ions and the radical ligands. Our study provides a rational design for stable organic radical-based ligands and further demonstrated the feasibility of a metal–radical approach toward magnetic materials.  相似文献   

8.
The rate of the reaction of the tert-butoxyl radical (t-BuO) with Fe2+ was measured using laser flash photolysis of methanolic solutions at room temperature. t-BuO were generated by homolytic photodecomposition of di-tert-butyl peroxide. The rate constant for oxidation of Fe2+ with t-BuO radicals was studied under pseudo-first order conditions. On the basis of competitive kinetics the quantum yield of oxidation, Φ(Fe3+), was determined as function of Fe2+ concentration by measuring the absorbance of Fe3+ as [FeCl]2+ complex. By using the literature values of the rate constants of relevant competing reactions, the desired rate constant was determined to be 3.0×108 M−1 s−1.  相似文献   

9.
The synthesis of tris[3-(6-carboxypyridin-2-yl)pyrazol-1-yl]methane is described in a linear multi-step protocol. The pyridyl-pyrazolyl arms are first constructed before being condensed with chloroform. Careful study of the condensation reaction shows the presence of an isomeric form of the tris(pyrazolyl)methane derivative in which one of the pyrazolyl substituents is linked through the nitrogen atom at the 2 position of the pyrazol. After acid-catalysed isomerisation to the desired isomer, the intermediate compound was subjected to a carboalkoxylation reaction and a subsequent hydrolysis. These are some rare examples of reactions directly occurring on the tris(pyrazolyl)methane platforms.  相似文献   

10.
Summary: The reverse atom transfer radical polymerization of butyl methacrylate in miniemulsion, initiated with the redox pair hydrogen peroxide/ascorbic acid and mediated with copper(II) bromide tris[2-di(2-ethylhexyl acrylate)aminoethyl]amine is capable of producing well-controlled high-molecular weight poly(butyl methacrylate).  相似文献   

11.
Perchlorotrityl radical (PTM), tris (2,4,6-trichlorophenyl) methyl radical (TTM), (3,5-dichloro-4-pyridyl) bis (2,4,6 trichlorophenyl) methyl radical (PyBTM), (N-carbazolyl) bis (2,4,6-trichlorophenyl) methyl radical (CzBTM), and their derivatives are stable organic radicals that exhibit light emissions at room temperature. Since these triarylmethyl radicals have an unpaired electron, their electron spins at the lowest excited state and ground state are both doublets, and the transition from the lowest excited state to the ground state does not pose the problem of a spin-forbidden reaction. When used as OLED layers, these triarylmethyl radicals exhibit unique light-emitting properties, which can increase the theoretical upper limit of the OLED’s internal quantum efficiency (IQE) to 100%. In recent years, research on the luminescent properties of triarylmethyl radicals has attracted increasing attention. In this review, recent developments in these triarylmethyl radicals and their derivatives in OLED devices are introduced.  相似文献   

12.
A series of neutral long‐lived purely organic radicals based on the stable [4‐(N‐carbazolyl)‐2,6‐dichlorophenyl]bis(2,4,6‐trichlorophenyl)methyl radical adduct (Cbz‐TTM) is reported herein. All compounds exhibit ambipolar charge‐transport properties under ambient conditions owing to their radical character. High electron and hole mobilities up to 10?2 and 10?3 cm2 V?1 s?1, respectively, were achieved. Xerographic single‐layered photoreceptors were fabricated from the radicals studied herein, exhibiting good xerographic photosensitivity across the visible spectrum.  相似文献   

13.
4,4',4' '-(1,3,5-Benzenetriyl)tris(2,6-di-tert-butylphenol) was prepared by the cross-coupling of 1,3,5-tribromobenzene and [4-(trimethylsiloxy)phenyl]magnesium bromide. X-ray analysis of the single crystal showed a propeller-like structure with a mean dihedral angle of 39 degrees between the hydroxyphenyl and the core benzene. The phenoxyl mono-, di-, and triradicals were generated by the electrochemical oxidation of the trianion. A stepwise radical formation was revealed by a differential pulse voltammogram, electrolytic ESR spectroscopy, and a comproportionation reaction between the radicals, which was discussed as an effect of the pi-conjugated but non-Kekulé-type coupler. The quartet and triplet ground state for the tri- and diradical, respectively, were confirmed by a SQUID measurement.  相似文献   

14.
Five diamines with thiophene-based bridges--(E)-1,2-bis{5-[bis(4-butoxyphenyl)amino]-2-thienyl}ethylene (1), 5,5'-bis[bis(4-methoxyphenyl)amino]-2,2'-bithiophene (2), 2,6-bis[bis(4-butoxyphenyl)amino]dithieno[3,2-b:2',3'-d]thiophene (3), N-(4-tert-butylphenyl)-2,6-bis[bis(4-methoxyphenyl)amino]dithieno[3,2-b:2',3'-d]pyrrole (4 a) and N-tert-butyl-2,6-bis[bis(4-methoxyphenyl)amino]dithieno[3,2-b:2',3'-d]pyrrole (4 b)--have been synthesised. The syntheses make use of the palladium(0)-catalysed coupling of brominated thiophene species with diarylamines, in some cases accelerated by microwave irradiation. The molecules all undergo facile oxidation, 4 b being the most readily oxidised at about -0.4 V versus ferrocenium/ferrocene, and solutions of the corresponding radical cations were generated by addition of tris(4-bromophenyl)aminium hexachloroantimonate to the neutral species. The near-IR spectra of the radical cations show absorptions characteristic of symmetrical delocalised species (that is, class III mixed-valence species); analysis of these absorptions in the framework of Hush theory indicates strong coupling between the two amine redox centres, stronger than that observed in species with phenylene-based bridging groups of comparable length. The strong coupling can be attributed to high-lying orbitals of the thiophene-based bridging units. ESR spectroscopy indicates that the coupling constant to the amino nitrogen atoms is somewhat reduced relative to that in a stilbene-bridged analogue. The neutral species and the corresponding radical cations have been studied with the aid of density functional theory and time-dependent density functional theory. The DFT-calculated ESR parameters are in good agreement with experiment, while calculated spin densities suggest increased bridge character to the oxidation in these species relative to that in comparable species with phenylene-based bridges.  相似文献   

15.
Methyl tert-butyl ether (MTBE) is recently widely used in the chemical and petrochemical industry as a non-polluting octane booster for gasoline and as an organic solvent. The isobaric or isothermal vapor–liquid equilibria (VLE) were determined directly for MTBE+C1–C4 alcohols. The excess enthalpy (HE) for butane+MTBE or isobutene+MTBE and excess volume (VE) for MTBE+C3–C4 alcohols were also determined. Besides, the infinite dilute activity coefficient, partial molar excess enthalpies and volumes at infinite dilution (γ, HE,∞, VE,∞) were calculated from measured data. Each experimental data were correlated with various gE models or empirical polynomial.  相似文献   

16.
Conformations of piperazine rings in 8-{4-[4-(2-pyrimidyl)-1-piperazinyl]butyl}-8-azaspiro[4.5]-decane-7,9-dione (buspir-one — 1) and its two analogues 8-{4-[4-(2-quinolinyl)-1-piperazinyl]butyl}-8-azaspiro[4.5]-decane-7,9-dione (kaspar — 2) and 4,4-dimethyl-1-{4-[4-(2-quinolinyl)-1-piperazinyl]butyl}-2,6-piperidinedione (mesmar — 3) (Fig. 1) have been studied with the aid of 1H NMR and 13C NMR spectra. For free bases the two bands corresponding to piperazine hydrogen atoms in the spectra broaden considerably with a decrease in temperature to divide into four separate bands, indicating the presence of a dynamic exchange process. A similar dynamic process, but for higher temperatures, was observed for buspirone (1), kaspar (2) and mesmar (3) hydrochlorides. Proton and carbon atom resonance lines have been assigned with the aid of 2D COSY and 2D HETCOR two-dimensional spectra.  相似文献   

17.
The Electron Spin Noise Scanning Tunnelling Microscopy (ESN-STM) technique is one of the most promising techniques detecting one single spin, combining the spatial resolution of the STM with the ability of spectral resolution and spin manipulation of Electron Spin Resonance. After its first observation, the effectiveness of this technique has been tested by different groups to study the properties of small aggregates or single organic radical molecules.We report on the ongoing ESN-STM study on nano-aggregates of tris(2,4,6-thrichlorophenyl)methyl radical (TTM) derivatives, whose possibility to be used as wires, switches and memory devices has already been investigated in bulk. After deposition on Au(111), TTM radicals preserved their magnetism. To treat the collected noise data we followed a statistical approach; some peculiar characteristics of this analysis will be addressed.  相似文献   

18.
5-{3-[1-(tert-Butyldimethylsilyloxy)ethyl]-4-oxo-azetidin-2-yl}-2,2,5-trimethyl-[1,3]dioxane-4,6-dione (3) has been submitted to nucleophilic attack with various nucleophiles. Meldrum's moiety transesterification, C4-substitution, β-lactam ring opening and Meldrum's moiety decarboxylation were observed. Reaction of 3 with ethanethiol and dimethylaminopyridine in ethanol quantitatively furnished ethyl 2-{3-[1-(tert-butyldimethylsilyloxy)ethyl]-4-oxo-azetidin-2-yl}-thiopropionate as the 1:1 mixture of β (7a) and (8a) diastereoisomers.  相似文献   

19.
The new bitopic, bis(1-pyrazolyl)methane-based ligand o-C6H4[CH2OCH2CH(pz)2]2 (L2, pz = pyrazolyl ring) is prepared from the reaction of (pz)2CHCH2OH (obtained from the reduction of (pz)2CHCOOH with BH3.S(CH3)2) with NaH, followed by the addition of alpha,alpha'-dibromo-o-xylene. The reaction of L2 with AgPF6 or AgO3SCF3 yields {o-C6H4[CH2OCH2CH(pz)2]2(AgPF6)}n or {o-C6H4[CH2OCH2CH(pz)2]2(AgO3SCF3)}n, respectively. Both compounds in the solid state have tetrahedral silver(I) centers arranged in a 1D coordination polymer network. The analogous ligand based on tris(1-pyrazolyl)methane units, o-C6H4[CH2OCH2C(pz)3]2 (L3), reacts with AgO3SCF3 to form a similar coordination polymer, {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)}n. In this case, each tris(pyrazolyl)methane unit in L3 adopts the kappa2-kappa0 bonding mode. Crystallization of a 3:1 mixture of AgO3SCF3 and L3 yields {o-C6H4[CH2OCH2C(pz)3]2(AgO3SCF3)2}n, in which the tris(1-pyrazolyl)methane units adopt a kappa2-kappa1 coordination mode.  相似文献   

20.
The condensation reactions between (4-amino-2,6-dichlorophenyl)bis(2, 4,6-trichlorophenyl)methyl radical and acetylacetone or 1, 4-bis(5-methyl-2-thienyl)-1,4-butanedione yield [2,6-dichloro-4-(2, 5-dimethyl-1-pyrrolyl)phenyl]bis(2,4,6-trichlorophenyl)methyl radical (3(*)()) and [2,6-dichloro-4-[2, 5-bis(5-methyl-2-thienyl)-1-pyrrolyl]phenyl]bis(2,4, 6-trichlorophenyl)methyl radical (4(*)()), respectively. EPR studies of both radicals 3(*)() and 4(*)() in CH(2)Cl(2) solution suggest a weak electron delocalization with coupling constant values of 1.25 and 1.30 G, respectively, with the six aromatic hydrogens. Their electrochemical behavior was analyzed by cyclic voltammetry. Both radicals show reversible reduction processes at E degrees = -0.69 V and -0.61 V versus SSCE, respectively, and anodic peak potentials at E(p)(a) = 1.10 and 0.72 V, respectively, versus SSCE at a scan rate (nu) of 200 mV s(-)(1), being reversible for radical 4(*)(). X-ray analysis of radical 3(*)() shows a high value (65 degrees ) of the dihedral angle between the 2,5-dimethylpyrrolidyl moiety and the phenyl ring. Smooth oxidation of radical 4(*)() in CH(2)Cl(2) containing trifluoroacetic acid gives an ionic diradical species with a weak electron interaction (|D/hc| = 0.0047 cm(-)(1)). A Curie plot of the Deltam(s)() = +/-2 signal intensity versus the inverse of the absolute temperature in the range between 4 and 70 K suggests a triplet or a nearly degenerate singlet-triplet ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号