首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
双极室联合处理啤酒废水的微生物燃料电池   总被引:1,自引:0,他引:1  
构建了双极室连续流联合处理废水的微生物燃料电池(MFC), 该MFC阳极室的出水直接用于阴极室的进水, 利用阴极室的好氧微生物进一步降解有机物. 以啤酒废水作底物, 研究了该MFC的产电性能和废水处理效果. 结果表明, 采用双极室连续流MFC可以大大提高废水的处理效果, 对啤酒废水化学需氧量(COD)的总去除率可达92.2%~95.1%, 其中阳极室中COD去除率为47.6%~56.5%. MFC的开路电压为0.451 V, 最大输出功率为2.89 W/m3. 实验中抑制MFC性能的主要因素是阴极的极化损失, 通过降低进入阴极室溶液的COD浓度、采用优质的阴极材料和加大阴极室内的曝气量等方法进一步优化电池的性能.  相似文献   

2.
生物阴极微生物燃料电池不同阴极材料产电特性   总被引:6,自引:0,他引:6  
以葡萄糖(COD初始浓度为2000 mg/L, COD为化学需氧量)为阳极燃料底物, 考察了碳纤维刷和柱状活性碳颗粒作为生物阴极微生物燃料电池(MFC)阴极材料的产电性能. 研究结果表明, 碳纤维刷MFC的启动时间比碳颗粒MFC的长, 达到稳定状态后的恒负载(300 Ω)电压(0.324 V)比碳颗粒阴极MFC的(0.581 V)低. 极化分析结果表明, 碳纤维刷MFC和碳颗粒MFC的最大功率密度分别为24.7 W/m3(117.2 A/m3)和50.3 W/m3(167.2 A/m3). 电化学交流阻抗谱(EIS)测定结果表明, 由于电极材料对微生物生长和分布状态存在不同的影响, 使得碳纤维刷阴极MFC的极化内阻大于碳颗粒阴极MFC的极化内阻.  相似文献   

3.
空气阴极生物燃料电池电化学性能   总被引:12,自引:0,他引:12  
为提高生物燃料电池(MFC)的输出功率, 降低内阻和有机物处理成本, 实验以空气电极为阴极, 泡沫镍(铁)为阳极,葡萄糖模拟废水为基质构建了直接空气阴极单室生物燃料电池, 考察了电池的电化学性能. 结果表明, MFC的开路电压为0.62 V, 内阻为33.8 Ω, 最大输出功率为700 mW·m-2 (4146 mW·m-3污水), 电子回收率20%. 放电曲线、循环伏安测试表明, MFC首次放电比容量和比能量分别为263 mAh·g-1 COD(化学需氧量)和77.3 mWh·g-1 COD, MFC充放电性能及稳定性均较好. 电化学交流阻抗谱(EIS)分析表明, 随放电时间的延长, 电池阻抗增大, 这是导致电池输出电压逐渐降低的原因之一. MFC运行8 h, COD的去除率为56.5%, 且COD的降解符合表观一级反应动力学.  相似文献   

4.
为寻找质优价廉的析氢催化剂,本研究以废旧金属网为单室微生物电解池(MEC)阴极,在不同外加电压下考察其制氢性能. 同时利用16S rDNA扩增测序技术分析原接种污泥、MFC和MEC阳极微生物的菌落特点. 实验结果表明,随着外加电压的增大,MEC产生的最大电流密度和周期运行时间分别呈现增大和缩短的趋势. 外加0.7 V电压时,废旧金属网阴极MEC的氢气产率和电能回收率分别达到0.330±0.012 m3H2·m-3·d-1和177.0±5.6%,远高于0.5 V时的数值,与0.9 V时相差不大. 废旧金属网阴极MEC的产氢能力可以和Pt/C阴极MEC相媲美,且具有良好的运行稳定性. 16S rDNA扩增测序结果显示培养环境对微生物的富集与淘汰有很大影响. 在外加电场环境中MEC阳极的优势菌落地杆菌属(Geobacter)得到很大程度富集,相对丰度高达79.4%以上.  相似文献   

5.
隔膜式电解槽生物膜阴极降解苯酚的过程及其条件的优化   总被引:2,自引:0,他引:2  
以炼油废水中的主要污染物苯酚为目标污染物, 采用不同生物膜电极反应器对苯酚进行降解, 从而寻找出降解苯酚的最佳反应途径. 研究结果表明, 运用隔膜式电解槽生物膜阴极区域对苯酚废水进行处理, 其苯酚的去除效果虽然没有在生物膜阴极与阳极相混合的混合式反应器中处理效果好, 但在18 h内苯酚浓度降解到0, 并且其化学需氧量(COD)去除率最高, 在16 h内COD去除率达到80%. 对于隔膜式电解槽生物膜阴极区域的降解条件优化后发现, 电流设定为5 mA, 初始苯酚质量浓度低于200 mg/L, 温度为35 ℃时, 苯酚降解效果最佳.  相似文献   

6.
以不同载量的MnO_2/rGO和Pt/C修饰阴极电极构建了生物阴极型双室微生物燃料电池(MFC),考察了不同阴极催化剂修饰MFC对其产电性能以及老龄垃圾渗滤液主要污染物去除效果的影响。结果表明,以MnO_2/rGO修饰MFC阴极电极材料,能显著提高MFC产电性能及对老龄垃圾渗滤液中污染物去除效果;输出电压为372 mV,功率密度为194 mW/m~3(是未经催化剂修饰MFC的两倍),内阻为264Ω,化学需氧量(COD)和氨氮(NH_3-N)去除率分别为58.68%和76.64%。当MnO_2/rGO载量为.0 mg/cm~2时,MFC性能与负载Pt/C的MFC性能接近,但构建成本却明显降低。  相似文献   

7.
活性炭纤维电极生成羟基自由基降解酸性红B   总被引:18,自引:0,他引:18  
分别采用具有吸附催化性能的活性炭纤维(ACF)作为阳极和阴极对水中偶氮染料酸性红B (ARB)的电化学降解情况进行了系统研究. 研究表明两种体系均可较好降解ARB, 可达到色度完全去除, 但ACF作为阴极电芬顿对有机物的矿化程度远远高于以ACF作为阳极时的矿化程度, 其TOC去除率达到70%, 高于阳极体系的30% TOC去除率. 通过电子自旋捕集技术(ESR)检测两种反应体系中产生的活性中间体, 发现在两种体系中均有高活性的羟基自由基生成, ACF阴极体系中产生的羟基自由基的量远远高于阳极体系产生量, 这是阴极体系有机物矿化效果较好的根本原因. 还对电流强度和初始pH的影响进行了研究, 并对两个体系反应机理进行了讨论.  相似文献   

8.
影响MFC产电能力及污水净化的非生物因素研究   总被引:1,自引:0,他引:1  
谢晴  毛翔洲  张玲  叶路生  彭蜀君  但德忠 《化学学报》2010,68(19):1935-1941
以厌氧污泥接种模拟生活污水, 构建双室无介体型微生物燃料电池(MFC). 以输出功率密度、库仑效率和CODCr(化学需氧量)去除率为评价指标, 采用正交设计考察4种非生物因素(即阴、阳极材料、底物和电子受体)对MFC产电及污水净化的影响. 在此基础上进一步探讨阴极离子浓度对电能输出的影响. 结果表明: 对MFC产能及污水净化的影响因素顺序为: 电子受体>阳极>阴极>底物, 最优组合为碳毡-乳酸钠-不锈钢板-铁氰化钾+溶解氧|向阴极液中投加NaCl可使产电能力显著增强, 最佳投加量为150 mmol•L-1. 同时, 阴极室定期添加铁氰化钾可维持电流稳定. 试验中, 葡萄糖型、乳酸钠型以及混合型底物模拟污水的CODCr均得到有效去除, 平均去除率达85.2%, 显示了研究的MFC具有很强的产电和污水净化能力.  相似文献   

9.
生物燃料电池处理生活污水同步产电特性研究   总被引:1,自引:0,他引:1  
以某生活污水处理厂缺氧池活性污泥为接种体,以葡萄糖为模拟生活废水,构建双室型微生物燃料电池。利用微生物燃料电池(MFC,Microbial fuel cell)实现生活废水降解与同步产电。研究基质降解动力学及温度对MFC电极过程动力学的影响,明确微生物电化学活性、阳极传荷阻抗、阳极电势、电池产能之间的关系,考察库伦效率及COD去除率。研究结果表明,电池功率输出与基质浓度关系遵循莫顿动力学方程:P=Pmaxc/(ks+c),其中,半饱和常数ks为138.5 mg/L,最大功率密度Pmax为320.2 mW/m2。葡萄糖浓度较小时,反应遵循一级动力学规律:-dcA/dt=kcA,k=0.262 h-1。操作温度从20℃提高到35℃,生物膜电化学活性不断提高,传荷阻抗从361.2Ω减小到36.2Ω,阳极电极电势不断降低,同时,峰值功率密度从80.6 mW/m2提高到183.3 mW/m2。45℃时,产电菌活性降低,峰值功率密度减小到36.8 mW/m2。葡萄糖浓度为1 500 mg/L,温度为35℃时,MFC电化学性能最佳,稳定运行6 h后库伦效率为44.6%,COD去除率为49.2%。  相似文献   

10.
梁鹏  郭超  黄霞 《电化学》2013,19(4):332-335
研究不同污泥热水解时间下水解液特性及其对微生物燃料电池(MFC)产电的影响.水解时间由2 h增至96 h,水解液pH基本稳定于7.4 ~ 8.0;水解时间增加,其电导率逐渐提高至2.53 mS·cm-1,COD浓度和碱度也不断增加,水解液的缓冲能力不断得到提高.MFC最大功率密度达到25 W·m-3,COD去除率呈现先增后降,水解6 h时达到最大(47%);库仑效率在预水解4 h时达到最高(71%).阳极室pH下降可归因于NH4+、Na+、Ca2+、Mg2+等阳离子迁移,其中NH4+的迁移量最大.  相似文献   

11.
以玉米秸秆稀酸水解液为阳极底物,用污水处理厂活性污泥为产电微生物菌源构建双室微生物燃料电池(MFC),采用三种不同方法改性阳极碳毡,并对其MFC产电性能进行研究。结果表明,以未改性碳毡(CC)、HNO_3酸解CC(HNO_3/CC)、壳聚糖改性CC(chitosan/CC)、PDADMAC/α-Fe_2O_3层层自组装改性碳毡(PDADMAC/α-Fe_2O_3/CC)的MFC的最大产电量分别为248、315、452和522 mV,最大功率密度分别为54.6、92.7、203.8和248.1 mW/m~2,COD的去除率分别为82.21%、81.46%、82.53%和86.44%。循环伏安曲线显示,PDADMAC/α-Fe_2O_3层层自组装改性的阳极碳毡具有较高的氧化还原电位。电化学阻抗谱图表明,PDADMAC/α-Fe_2O_3层层自组装改性碳毡的极化内阻最小,为7Ω。几种改性材料为阳极的MFC性能依次为PDADMAC/α-Fe_2O_3/CC壳聚糖/CCHNO_3/CC空白CC。  相似文献   

12.
CCl4 对左旋氧氟沙星超声降解的影响   总被引:2,自引:0,他引:2  
研究了CCl4对超声降解喹诺酮类抗生素左旋氧氟沙星(Levofloxacin)的影响, 考察了CCl4添加量、 超声功率、 溶液初始pH值及左旋氧氟沙星初始浓度等影响因素, 并采用HPLC和LC-MS/MS对超声降解产物进行了初步分析. 结果表明, CCl4增强了左旋氧氟沙星的超声降解, 当反应液体积为50 mL, 超声35 min时, 随着CCl4体积分数的增大(0~0.06%), 左旋氧氟沙星的降解率由1.9%增至69.2%; 超声功率为100~200 W时, 降解率随着功率的升高而增大, 功率为200~400 W时降解率有所降低; pH值对左旋氧氟沙星的超声降解影响很大, pH =7.14时容易超声降解, pH过低或过高均导致降解率显著减小; CCl4的体积分数一定时, 左旋氧氟沙星的降解率随其初始浓度的增大而降低; 左旋氧氟沙星的降解率在33~49 ℃时最大. CCl4强化超声降解左旋氧氟沙星过程主要是由·OH和一系列氯自由基参与的反应. HPLC分析发现, 降解过程中同时生成了2个产物, 并通过LC-MS/MS对其进一步鉴定.  相似文献   

13.
电生成Fenton试剂及其对染料降解脱色的研究   总被引:11,自引:0,他引:11  
郑曦  陈日耀  兰瑞芳  陈晓  陈震 《电化学》2003,9(1):98-104
以可溶性铁为阳极,多孔石墨电极为阴极,Na2SO4为支持电解质.通电后,铁从阳极溶解生成二价亚铁离子Fe2+,氧在阴极上还原为过氧化氢H2O2,于电解现场发生Fenton反应,产生羟基自由基即Fenton试剂.在低电流密度(10mA/cm2)下,可有效地抑制阴、阳两极副反应的发生,所产生的羟基自由基浓度足以有效地进行染料废水的降解与脱色,脱色率达100%,CODcr去除率达80%.  相似文献   

14.
研究了在不同电流密度下进行长时间极化后Pb-Ag(0.8%(质量分数,w))平板阳极的阳极电位、腐蚀率及阳极钝化膜.同时,也研究了该阳极在ZnSO4-MnSO4-H2SO4电解液中的阴极电流效率和阴极锌品质.阳极钝化膜的表面形貌用扫描电镜(SEM)进行观测.实验结果表明,不管电解液中是否存在Mn2+,电流密度对阳极和阴极的电化学行为都产生了显著的影响.随着电流密度的升高,阳极电位、腐蚀率、阴极电流效率和阳极泥生成量也增加,而阴极锌中的Pb含量则减少.当电流密度从500A·m-2降到200A·m-2时,阳极在ZnSO4-MnSO4-H2SO4电解液中的稳定电位和腐蚀率分别减少64mV和40%.此外,在比较低的电流密度下,阳极电位更容易稳定,阳极表面生成的钝化膜更加致密并与基体结合牢固,这些都有利于降低阳极腐蚀率.为了降低阳极电位、减小阳极腐蚀率及阳极泥生成量并提高阴极电流效率和阳极锌品质,锌电积的理想工作条件是较低的阳极电流密度和较高的阴极电流密度.  相似文献   

15.
张瑞  吴云  王鲁天  吴强  张宏伟 《化学进展》2020,32(12):2013-2021
微生物燃料电池(MFC)阴极电子受体的多样性可实现其阴极脱氮,从而将产生的电能合理利用,因此阴极脱氮成为了MFC的一个研究方向,同时也为实际废水中氮素的去除提供了新的可能。然而在反应过程中有众多因素会导致NOx-N与其他电子受体竞争阳极电子的现象,影响阴极反硝化过程对于电子的利用率,从而造成脱氮效率低等现实问题。目前已有许多研究通过优化MFC自身结构弥补产电的缺陷,及将与其他工艺系统耦合实现同步硝化反硝化等方法,取长补短以增加脱氮效率,降低对碳源的需求,以此解决微生物燃料电池阴极脱氮出现的问题。本文从MFC不同的脱氮历程、MFC工艺条件(pH、C/N、DO)、极室分隔材料等影响MFC阴极脱氮的因素及影响其阴极反硝化微生物群落构成等方面,进行了综述并预测未来研究方向。  相似文献   

16.
采用芳香亲核取代反应及溶液铸膜法,制备了一系列具有不同离子交换容量(IEC)的侧链型磺化聚芳醚砜(s SPFAE)阳离子交换膜,并作为分离膜应用于微生物燃料电池(MFC).研究了s SPFAE膜在双室MFC中产电性能并与商用阳离子交换膜进行了对比.s SPFAE膜的IEC为0.97~1.56 mmol/g,厚度约为80μm,在30℃时吸水率为20.9%~41.7%,电导率达到27.3~60.5 m S/cm,高于商用膜(22 m S/cm,420μm).对采用s SPFAE膜的MFC,根据峰功率密度法及极化曲线斜率法得到的MFC内阻约为29~64Ω,随着IEC的升高而降低,库伦效率达到47.7%~55%,其中s SPFAE-1.56膜的最大功率密度达到657.3 m W/m~2,且s SPFAE膜均表现出优于商用膜的产电性能.利用模拟等效电路对整个MFC系统进行EIS分析,结果表明阳极扩散内阻占这类MFC系统总内阻的87%~90%.结合循环伏安曲线、电化学阻抗谱测试及电极电势分析结果,表明分离膜对两极室间物质传递及阳极扩散阻抗有较大的影响.  相似文献   

17.
电化学或光电化学半导体催化剂广泛应用于降解污水中的有机与无机污染物,有望实现低能耗且高效的污染物降解.目前,已有多种异质结半导体光催化剂的研究报道,并且大多数的研究结果显示催化剂活性有明显提高,但仍存在着光激发后电子与空穴的复合问题.光电化学系统的构建可减少电子与空穴的复合,因光催化阳极与光催化阴极之间费米能级的不同,在两极之间形成异质结,产生内电场,自生偏压驱动电子流动.已有诸多研究报道将TiO2催化剂与g-C3N4复合形成异质结,提高光催化活性.由于g-C3N4(~–1.12 eV vs.NHE)导带位置相比于TiO2(~–0.2 eV vs.NHE)更负,因此在两者之间可形成内部偏压,驱动电子由g-C3N4转移至TiO2.WO3/W导带位置(~+0.2 eV vs.NHE)比TiO2与g-C3N4更正,因此自生内偏压促进电子由阳极流动至阴极.我们研究组发展了一种在无光条件下的自偏压电化学燃料电池系统,异质结间的电子流动可活化氧气产生自由基,自由基可用于阳极污染物的降解,但阴极未降解污染物.本文在上述研究基础上,应用TiO2/g-C3N4异质结与WO3/W分别作为阳极与阴极催化剂,构建自偏压催化燃料电池系统,在无光条件下催化阳极与阴极之间自发电子转移,活化氧气产生自由基,同时实现低能耗阳极室内污染物如罗丹明B和三氯生的氧化,且电子用于阴极室内硝态氮的还原.通过在空气中原位加热与氧化钨丝制得WO3/W阴极,由扫描电镜图可知在钨丝表面形成三氧化钨纳米粒子,此结构增大了催化剂的表面积以及催化剂与电解液的接触面积,有利于电荷转移.用循环伏安曲线(CV)与电流时间曲线(I-t)表征了电极的电化学性质.CV测试结果表明,相比于硫酸钠电解液,WO3/W阴极在含有硝态氮的电解液中存在还原峰,且紫外照射比无光条件下的电流略大,说明此电极在无光条件下可用于还原硝态氮,有光更利于激发催化剂产生电子与空穴降解和去除污染物.在硫酸钠电解液中,无光照条件下(同室),I-t曲线表明TiO2/g-C3N4相比于WO3/W电极可产生更大电流,因此选择TiO2/g-C3N4作为阳极,WO3/W作为阴极.在含污染物电解液中,无光照条件下,Pt片作为对电极时(同室),I-t曲线中的电流在曝气时比未曝气时小,说明电极上产生的部分电子用于活化氧气产生自由基,因此转移到外电路的电子减少,电流变小;相反,当TiO2/g-C3N4阳极置于阳极室,WO3/W阴极置于阴极室时(两室),阳极鼓入空气,阴极曝氮气时,电流比两室均未曝气时大,说明此系统有利于电子产生与转移,用于氧化还原去除污染物.相比于传统方法,此系统通过阳极室内曝空气与活化分子氧形成自由基,无需外加偏压,在有光与无光条件下,均可实现对阳极室与阴极室内不同污染物的同时去除或降解,同时提出了此系统中的降解机理.  相似文献   

18.
电化学或光电化学半导体催化剂广泛应用于降解污水中的有机与无机污染物,有望实现低能耗且高效的污染物降解.目前,已有多种异质结半导体光催化剂的研究报道,并且大多数的研究结果显示催化剂活性有明显提高,但仍存在着光激发后电子与空穴的复合问题.光电化学系统的构建可减少电子与空穴的复合,因光催化阳极与光催化阴极之间费米能级的不同,在两极之间形成异质结,产生内电场,自生偏压驱动电子流动.已有诸多研究报道将TiO_2催化剂与g-C_3N_4复合形成异质结,提高光催化活性.由于g-C_3N_4(~-1.12 eV vs.NHE)导带位置相比于TiO_2(~-0.2 eV vs.NHE)更负,因此在两者之间可形成内部偏压,驱动电子由g-C_3N_4转移至TiO_2.WO_3/W导带位置(~+0.2eV vs.NHE)比TiO_2与g-C_3N_4更正,因此自生内偏压促进电子由阳极流动至阴极.我们研究组发展了一种在无光条件下的自偏压电化学燃料电池系统,异质结间的电子流动可活化氧气产生自由基,自由基可用于阳极污染物的降解,但阴极未降解污染物.本文在上述研究基础上,应用TiO_2/g-C_3N_4异质结与WO_3/W分别作为阳极与阴极催化剂,构建自偏压催化燃料电池系统,在无光条件下催化阳极与阴极之间自发电子转移,活化氧气产生自由基,同时实现低能耗阳极室内污染物如罗丹明B和三氯生的氧化,且电子用于阴极室内硝态氮的还原.通过在空气中原位加热与氧化钨丝制得WO_3/W阴极,由扫描电镜图可知在钨丝表面形成三氧化钨纳米粒子,此结构增大了催化剂的表面积以及催化剂与电解液的接触面积,有利于电荷转移.用循环伏安曲线(CV)与电流时间曲线(I-t)表征了电极的电化学性质.CV测试结果表明,相比于硫酸钠电解液,WO_3/W阴极在含有硝态氮的电解液中存在还原峰,且紫外照射比无光条件下的电流略大,说明此电极在无光条件下可用于还原硝态氮,有光更利于激发催化剂产生电子与空穴降解和去除污染物.在硫酸钠电解液中,无光照条件下(同室),I-t曲线表明TiO_2/g-C_3N_4相比于WO_3/W电极可产生更大电流,因此选择TiO_2/g-C_3N_4作为阳极,WO_3/W作为阴极.在含污染物电解液中,无光照条件下,Pt片作为对电极时(同室),I-t曲线中的电流在曝气时比未曝气时小,说明电极上产生的部分电子用于活化氧气产生自由基,因此转移到外电路的电子减少,电流变小;相反,当TiO_2/g-C_3N_4阳极置于阳极室,WO_3/W阴极置于阴极室时(两室),阳极鼓入空气,阴极曝氮气时,电流比两室均未曝气时大,说明此系统有利于电子产生与转移,用于氧化还原去除污染物.相比于传统方法,此系统通过阳极室内曝空气与活化分子氧形成自由基,无需外加偏压,在有光与无光条件下,均可实现对阳极室与阴极室内不同污染物的同时去除或降解,同时提出了此系统中的降解机理.  相似文献   

19.
Ru0.7Si0.3O2/Ti电极电催化氧化处理硝基苯废水   总被引:1,自引:0,他引:1  
制备了Ru0.7Si0.3O2/Ti电极,并以该电极作为氧化阳极,不锈钢为阴极,电催化氧化降解废水中硝基苯。 实验结果表明,当硝基苯初始质量浓度为220 mg/L时,最佳条件为:电流密度25×10-3 A/cm2;Na2SO4作为电解质时加入量为8 g/L;溶液初始pH=2。 在此最佳条件下,硝基苯去除率大于85%,TOC去除率大于50%,表明Ru0.7Si0.3O2/Ti阳极能有效去除废水中有机污染物;对中间产物的检测结果表明,硝基苯的降解是阴阳两极协同作用的结果。  相似文献   

20.
阳极电势对Geobacter sulfurreducens产电性能的影响   总被引:1,自引:0,他引:1  
以产电模式菌Geobacter sulfurreducens为研究对象接种两瓶型微生物燃料电池(MFC)阳极室, 利用恒电位仪控制阳极电势, 考察了7种电势条件下MFC的启动期、最大功率密度和阳极生物量的变化情况. 研究结果表明, 当阳极电势为-250, -100和50 mV(vs. SCE)时, MFC启动较快, CV曲线和极化曲线表明, 在这3种电势条件下, MFC产电性能增强, 其中阳极电势为-100 mV时, MFC最大功率密度为1.67 W/m3, 比固定外阻条件下启动的MFC最大功率密度提高了5倍. 控制合适的阳极电势可以使阳极生物量提高2.5~3倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号