首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
采用密度泛函理论方法, 模拟了Rh(PPh3)3Cl催化的C-H键活化/C-C键偶联反应. 将反应机理分为C-H键活化、 迁移插入和还原消除3个过程进行讨论. 计算结果表明, 势能面的最高点为迁移插入的过渡态, 相对于初始原料的自由能为108.3 kJ/mol. 为了探索简化计算模型对模拟反应机理的影响, 使用2种模型催化剂Rh(PMe3)3Cl和Rh(PH3)3Cl表征相同的反应过程, 结果表明配体简化模型不合理, 主要是因为PPh3配体的空间效应和熵效应非常明显.  相似文献   

2.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

3.
Dioxomolybdenum(VI) complex [MoO2(Heg)2] (H2eg = 1,2-ethanediol) reacts with phenolic ligand precursors tris(2-hydroxy-3,5-dimethylbenzyl)amine (H3LMe) and tris(2-hydroxy-3,5-di-tert-butylbenzyl)amine (H3LtBu) to form oxomolybdenum(VI) complexes of type [MoO(LR) (Heg)]. The Heg ligand can be replaced by other alcohols (i.e. 2-aminoethanol, 2-amino-2-methylpropan-1-ol, 2-(dimethylamino)ethanol or allyl alcohol) in the reaction at refluxing toluene or at neat alcohol. Treatment of [MoO(LR)(Heg)] with Me3SiCl yields corresponding chlorido complexes [MoO(LR)Cl]. These are also formed in the reaction of H3LR with [MoO2Cl2(dmf)2]. The reaction of [MoO(LR)Cl] with MeMgI yields air-stable monomethyl derivatives [MoO(LR)(Me)]. X-ray analyses of [MoO(LtBu)X] (X = Heg, 2-methyl-2-aminopropanolate anion or Cl) reveal that the ligand LR has a tetradentate coordination through three oxygen donors and one nitrogen donor, which is located trans to the terminal oxo group. The sixth coordination site is occupied by an oxygen donor, a chlorido ligand or a methyl group.  相似文献   

4.
Reaction of trithiazyltrichloride, (NSCl)3, with NaOR in ROH (R = Me, Et, iPr, nPr, nBu, tBu, pentyl, amyl, cyclohexyl, benzyl) gives (NSOR)3. The compounds have been characterized by IR and mass spectroscopy and in the case of R = methyl, (2a) and benzyl, (2e) by X-ray crystallography. In the structures of both (2a) and (2e) the S3N3 ring adopts a flattened chair cyclohexane con7mation with the substituents being axial.  相似文献   

5.
以乙酰丙酮铑(Rh(acac)_3)和乙酰丙酮钐(Sm(acac)_3)为前驱体,用浸渍法制备了Rh/SiO_2和Rh-Sm_2O_3/SiO_2催化剂。采用原位红外光谱、热重分析、低温N_2吸附、X射线粉末衍射、高分辨透射电子显微镜、H_2-程序升温还原和X射线光电子能谱等实验技术对催化剂的制备过程,比表面积和物相以及Rh与Sm_2O_3间的相互作用进行了表征,并以甲烷部分氧化制合成气为目标反应对催化剂的稳定性进行了考察。研究表明:以Rh(acac)_3和Sm(acac)_3为前驱体采用简单的浸渍法即可制备出Rh平均粒径为2.3 nm且具有良好抗烧结性能的Rh-Sm_2O_3/SiO_2催化剂。在浸渍过程中乙酰丙酮化合物通过与SiO_2表面羟基形成氢键而负载于载体表面。Sm(acac)_3在SiO_2表面的单层负载量(质量分数)约为31%,对应于Sm_2O_3的质量分数约为15%,只要Sm(acac)_3的质量分数低于这一阈值,均可保证分解后生成的Sm_2O_3以高分散形式负载于SiO_2上,且不会因高温(800°C)焙烧而团聚。高分散于SiO_2表面的Sm_2O_3与Rh之间存在强的相互作用,可显著提高Rh的分散度,防止其在高温反应条件下烧结,进而使低Rh负载量的催化剂表现出良好的甲烷部分氧化制合成气反应活性和稳定性。  相似文献   

6.
The asymmetric C-H activation reactions of methyl aryldiazoacetates are readily induced by the rhodium prolinate catalyst Rh(2)(S-DOSP)(4) (1) or the bridged prolinate catalysts Rh(2)(S-biDOSP)(2) (2a) and Rh(2)(S-biTISP)(2) (2b). The C-H activation of N-Boc-protected cyclic amines demonstrates that the donor/acceptor-substituted carbenoids display remarkable chemoselectivity, which allows for highly regioselective, diastereoselective, and enantioselective reactions to be achieved. Furthermore, the reactions can display high levels of double stereodifferentiation and kinetic resolution. The C-H activation is caused by a rhodium carbenoid induced C-H insertion. The potential of this chemistry is demonstrated by a very direct synthesis of threo-methylphenidate.  相似文献   

7.
Substances of the types MH4ntmp, Mg3[M(Hntmp)]2, M2H2ntmp and Mg[M2(Hntmp)]2, where M = Co, Ni, Cu, Zn and H6ntmp = N[CH2PO(OH)2]3 were prepared. The sodium and cesium salts of the [Co(Hntmp)]3− complexes were also prepared. The IR and electronic spectra and the experimental magnetic susceptibilities indicate that these are high-spin complexes. The coordination surroundings of the central atom consist of a highly distorted octahedron of the ligand oxygen atoms. The nitrogen atom is not coordinated to the central atom.  相似文献   

8.
This work performed a theoretical investigation to explore the mechanism and reactivity of the Co-mediated intramolecular Pauson-Khand reaction for constructing bicyclo-skeletons.  相似文献   

9.
Pd-catalyzed oxidative C-H/C-H coupling reaction is an emerging type of C-H acti-vation reaction, which attracts great interests because both reaction partners do not re-quire pre-functionalization. In the present study, we employed DFT methods to investigatethe mechanism of Pd(OAc)2-catalyzed oxidative C-H/C-H coupling of pentafluoroben-zene with benzene. Four possible pathways were examined in the C-H activation part: path A benzene-pentafluorobenzene mechanism (C-H activation of benzene occurs before the C-H activation of pentafluorobenzene), path B pentafluorobenzene-benzene mechanism (C-H activation of benzene occurs after the C-H activation of pentafluorobenzene), path C benzene-pentafluorophenylsilver mechanism (C-H activation of benzene and subsequenttransmetalation with pentafluorophenyl silver complex), path D pentafluorophenylsilver-benzene mechanism (transmetalation with pentafluorophenyl silver complex and subsequent C-H activation of benzene). Based on the calculations, the sequences of two C-H activation steps are found to be different in the oxidative couplings of same substrates (i.e. pentaflu-orobenzene and benzene) in different catalytic systems, where the additive Ag salts played a determinant role. In the absence of Ag salts, the energetically favored pathway is path B (i.e. the C-H activation of pentafluorobenzene takes place before the C-H cleavage of benzene). In contrast, with the aid of Ag salts, the coordination of pentafluorophenylsilver to Pd center could occur easily with a subsequent C-H activation of benzene in the second step, and the second step significantly raises the whole reaction barrier. Alternatively, in thepresence of Ag salts, the kinetically preferred mechanism is path C (i.e. the C-H activation of benzene takes place in the first step followed by transmetalation with pentafluorophenyl-silver complex), which is similar to path A. The calculations are consistent with the H/D exchange experiment and kinetic isotope effects. Thus the present study not only offers a deeper understanding of oxidative C-H/C-H coupling reaction, but also provides helpful insights to further development of more efficient and selective oxidative C-H/C-H coupling reactions.  相似文献   

10.
Reaction of[Rh(H2O)6]3+ with one molar equivalent of [18]aneN2S4 in refluxing MeOH-H2O (1 : 1 v/v) for 12 h affords an orange solution from which the complex [Rh([18]aneN2S4)](PF6)3 can be isolated upon addition of NH4PF6. A single crystal X-ray structure determination shows a distorted octahedral geometry at rhodium(III) involving the four thioether and two aza-donors of the macrocycle. The complex cation adopts a rac-configuration via meridional coordination of the two SCH2CH2NCH2CH2S linkages.  相似文献   

11.
采用水热法制备了氢氧化镍纳米线/三维石墨烯复合材料及作为比较的三维石墨烯、氢氧化镍纳米线、还原氧化石墨烯和氢氧化镍纳米线/还原氧化石墨烯, 通过X射线衍射、扫描电镜、热失重分析和氮气吸脱附表征了材料的形貌、结构和组成, 并采用循环伏安法和恒电流充放电测试了复合材料的电化学性能. 结果表明: 氢氧化镍纳米线/三维石墨烯复合材料中直径为20-30 nm的氢氧化镍纳米线和三维结构的石墨烯紧密结合, 相互交联形成网状结构, 其比表面积达到136 m2·g-1, 孔径分布20-50 nm, 氢氧化镍纳米线的含量达到88% (w,质量分数). 在6 mol·L-1的KOH电解液中, 复合材料的比电容在1 A·g-1电流密度下达到1664 F·g-1, 在1 A·g-1电流密度下循环3000 次后的比电容保持率为93%. 将复合材料的比电容和循环性能与氢氧化镍纳米线、氢氧化镍纳米线/还原氧化石墨烯、三维石墨烯和还原氧化石墨烯的性能进行比较, 发现三维石墨烯较还原氧化石墨烯具有更高的比表面积和三维多孔结构, 可以更大地提高活性物质的利用率, 进而提高复合材料的比电容和稳定性.  相似文献   

12.
The Rh(COD) and Ir(COD) homobimetallic complexes of s-indacene-diide, 2,6-dimethyl-s-indacene-diide, as-indacene-diide, and 2,7-dimethyl-as-indacene-diide have been synthesized from the di-lithium salts of the dianions and metal dimers [M(μ-Cl)L2]2 (M = Rh, Ir; L2 = COD, NBD, (ethylene)2, (CO)2 as mixtures of syn and anti isomers. The syn/anti ratio depends on the nature of the ancillary ligands at the metal and on the s or as geometry of the bridging ligand. In the reaction of the 2,7-dimethyl-as-indacene-diide-[M(COD)]2 species with CO, the higher reactivity of the syn isomers has been justified on the basis of a greater instability of the ground state due to steric interactions between the COD groups. Bis-η1 metal-bonded intermediates have been identified in the carbonylation of iridium derivatives; on the other hand, the formation of the bis-η5 mixed complexes syn and anti-{2,7-dimethyl-as-indacene-diide-[Rh(COD)][Rh(CO)2]} and their reactivity strongly support the existence of metal---metal interaction in the rhodium derivatives.  相似文献   

13.
The Rh2(S-DOSP)4-catalyzed reaction of vinyldiazoacetates with dihydronaphthalenes results in a highly enantioselective (91-99.6% ee) and diastereoselective (>98% de) C-H functionalization. The apparent intermolecular C-H insertion was demonstrated to be a combined C-H activation/Cope rearrangement followed by a retro-Cope rearrangement.  相似文献   

14.
Oxime directed aromatic C-H bond activation and oxidative coupling to alkenes is reported using a cationic Rh(III) catalyst. Significantly, the method can be used to oxidatively couple unactivated, aliphatic alkenes.  相似文献   

15.
Cationic rhodium and iridium complexes of the type [M(COD)(PPh3)2]PF6 (M = Rh, 1a; Ir, 1b) are efficient precatalysts for the hydroformylation of 1-hexene to its corresponding aldehydes (heptanal and 2-methylhexanal), under mild pressures (2–5 bar) and temperatures (60 °C for Rh and 100 °C for Ir) in toluene solution; the linear to branched ratio (l/b) of the aldehydes in the hydroformylation reaction varies slightly (between 3.0 and 3.7 for Rh and close to 2 for Ir). Kinetic and mechanistic studies have been carried out using these cationic complexes as catalyst precursors. For both complexes, the reaction proceeds according to the rate law ri = K1K2K3k4[M][olef][H2][CO]/([CO]2 + K1[H2][CO] + K1K2K3[olef][H2]). Both complexes react rapidly with CO to produce the corresponding tricarbonyl species [M(CO)3(PPh3)2]PF6, M = Rh, 2a; Ir, 2b, and with syn-gas to yield [MH2(CO)2(PPh3)2]PF6, M = Rh, 3a; Ir, 3b, which originate by CO dissociation the species [MH2(CO)(PPh3)2]PF6 entering the corresponding catalytic cycle. All the experimental data are consistent with a general mechanism in which the transfer of the hydride to a coordinated olefin promoted by an entering CO molecule is the rate-determining step of the catalytic cycle.  相似文献   

16.
Reactions of [(η6-arene)RuCl2]2 (1) (η6-arene=p-cymene (1a), 1,3,5-Me3C6H3 (1b), 1,2,3-Me3C6H3 (1c) 1,2,3,4-Me4C6H2(1d), 1,2,3,5-Me4C6H2 (1e) and C6Me6 (1f)) or [Cp*MCl2]2 (M=Rh (2), Ir (3); Cp*=C5Me5) with 4-isocyanoazobenzene (RNC) and 4,4′-diisocyanoazobenzene (CN–R–NC) gave mononuclear and dinuclear complexes, [(η6-arene)Ru(CNC6H4N=NC6H5)Cl2] (4a–f), [Cp*M(CNC6H4N=NC6H5)Cl2] (5: M=Rh; 6: M=Ir), [{(η6-arene)RuCl2}2{μ-CNC6H4N=NC6H4NC}] (8a–f) and [(Cp*MCl2)2(μ-CNC6H4N=NC6H4NC)}] (9: M=Rh; 10: M=Ir), respectively. It was confirmed by X-ray analyses of 4a and 5 that these complexes have trans-forms for the ---N=N--- moieties. Reaction of [Cp*Rh(dppf)(MeCN)](PF6)2 (dppf=1,1′-bis (diphenylphosphino)ferrocene) with 4-isocyanoazobenzene gave [Cp*Rh(dppf)(CNC6H4N=NC6H5)](PF6)2 (7), confirmed by X-ray analysis. Complex 8b reacted with Ag(CF3SO3), giving a rectangular tetranuclear complex 11b, [{(η6-1,3,5-Me3C6H3)Ru(μ-Cl}4(μ-CNC6H4N=NC6H4NC)2](CF3SO3)4 bridged by four Cl atoms and two μ-diisocyanoazobenzene ligands. Photochemical reactions of the ruthenium complexes (4 and 8) led to the decomposition of the complexes, whereas those of 5, 7, 9 and 10 underwent a trans-to-cis isomerization. In the electrochemical reactions the reductive waves about −1.50 V for 4 and −1.44 V for 8 are due to the reduction of azo group, [---N=N---]→[---N=N---]2−. The irreversible oxidative waves at ca. 0.87 V for the 4 and at ca. 0.85 V for 8 came from the oxidation of Ru(II)→Ru(III).  相似文献   

17.
Rhodium(II) complexes with dioximes [Rh(Hdmg)2(PPh3)]2 [I] (Hdmg=monoanion of dimethylglyoxime) and [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II] catalyse hydroformylation and hydrogenation reactions of 1-hexene at 1 MPa CO/H2 and 0.5 MPa H2 at 353 K, respectively. Hydroformylation with complex [I] produces 94% of aldehydes (n/iso=2.2) and 6% 2-hexene whereas the second catalyst [II] gives ca. 40% of aldehydes (n/iso=2.1) and 60% of 2-hexene. Corresponding Rh(III) complexes are inactive in hydroformylation except of RhH(Hdmg)2(PPh3) [III], which shows activity similar to [I]. Complexes [Rh(Hdmg)2(PPh3)]2 [I], [Rh(Hdmg)(ClZndmg)(PPh3)]2 [II], RhH(Hdmg)2(PPh3) [III] and [Rh(Hdmg)2(PPh3)2]ClO4 [V] catalyse 1-hexene hydrogenation with an average TON ca. 18 cycles/mol [Rh]×min. Complex [II] has also been found to catalyse hydrogenation of cyclohexene, 1,3-cyclohexadiene and styrene.  相似文献   

18.
An X-ray crystallographic study, the first of a complex containing a chelating bidentate isonitrile (DiNC) ligand, reveals that [Rh(t-BuDiNC)2]BPh4·1.5CH3CN crystallizes as a “slipped-stacked” face-to-face dimer of two approximately planar [Rh(t-BuDiNC)2]+ cations with a Rh-Rh distance of 3.384 Å, and an angle of 22.7° between the stacking axis and the Rh---Rh vector. The syntheses of two new bidentate isonitrile ligands, SiNC-2 and SiNC-3 are also described. These ligands contain bulky trimethylsiloxy groups ortho to each isonitrile group and differ only in that the SiNC-3 ligand contains an additional CH2 unit in its backbone. Each reacts with [Rh(COD)Cl]2 to afford, after metathesis with KPF6, a complex of the empirical formula [Rh(SiNC-n)2]PF6. Spectroscopic results suggest the SiNC-2 complex is dinuclear, with four SiNC-2 ligands bridging the two rhodium atoms. The SiNC-3 complex is mononuclear, but unlike most other mononuclear [Rh(CNR)4]+ complexes, shows no tendency to self-associate in solution. The different structures of these two complexes and the solution behavior of the SiNC-3 complex are attributed to the bulkiness of the trimethylsiloxy groups.  相似文献   

19.
Miho Fujita  R. D. Gillard 《Polyhedron》1988,7(24):2731-2742
Stable aqueous solutions of the green ion [Co(sa1)3]3− (sa1 = dianion, C6H4( )(CO ), of salicylic acid, 2-hydroxybenzoic acid) are obtained from [Co(NH3)5 C1]C12 and an excess of salicylic acid. Several salts, [C][Co(sa1)3] have been characterized, where C = [Co(NH3)6]3+ and [M(en)3]3+ (M = Co or Rh, EN = 1,2-diamino-ethane). By using (+)-[Rh(en)3]3+, optical resolution via less soluble diastereoisomeric salts has been achieved, and isomerization and racemization have been studied. Resolved tris-malonatocobaltate(III) has been used as a model. A novel thermochromism (77-293 K) in solid Δ(+)-[Rhen3]Λ[Co(sa1)3 is described.  相似文献   

20.
Hollow structure cobalt hydroxide (h-Co(OH)2) was synthesized via a solvothermal-hydrothermal method and presented high activation activity for peroxymonosulfate to degrade ibuprofen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号