首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 600 毫秒
1.
In this study, we tentatively identify \begin{document}$ P_{cs}(4338) $\end{document} as the \begin{document}$ \bar{D}\Xi_c $\end{document}molecular state and distinguish the isospins of current operators to explore in detail the\begin{document}$ \bar{D}\Xi_c $\end{document}, \begin{document}$ \bar{D}\Lambda_c $\end{document}, \begin{document}$ \bar{D}_s\Xi_c $\end{document}, \begin{document}$ \bar{D}_s\Lambda_c $\end{document}, \begin{document}$ \bar{D}^*\Xi_c $\end{document}, \begin{document}$ \bar{D}^*\Lambda_c $\end{document}, \begin{document}$ \bar{D}^*_s\Xi_c $\end{document}, and \begin{document}$ \bar{D}^*_s\Lambda_c $\end{document} molecular states without strange, with strange, and with double strange in the framework of QCD sum rules. The present exploration favors identifying \begin{document}$ P_{cs}(4338) $\end{document} (\begin{document}$ P_{cs}(4459) $\end{document}) as the \begin{document}$ \bar{D}\Xi_c $\end{document} (\begin{document}$ \bar{D}^*\Xi_c $\end{document}) molecular state with the spin-parity \begin{document}$ J^P={\dfrac{1}{2}}^- $\end{document} (\begin{document}$ {\dfrac{3}{2}}^- $\end{document}) and isospin \begin{document}$ (I,I_3)=(0,0) $\end{document}, and the observation of their cousins with the isospin \begin{document}$ (I,I_3)=(1,0) $\end{document} in the \begin{document}$ J/\psi\Sigma^0/\eta_c\Sigma^0 $\end{document} invariant mass distributions would decipher their inner structures.  相似文献   

2.
In this study, we systematically investigated two-pseudoscalar meson systems with the Bethe-Salpeter equation in the ladder and instantaneous approximations. By solving the Bethe-Salpeter equation numerically with the kernel containing the one-particle exchange diagrams, we found that the \begin{document}$ K\bar{K} $\end{document}, \begin{document}$ DK $\end{document}, \begin{document}$ B\bar{K} $\end{document}, \begin{document}$ D\bar{D} $\end{document}, \begin{document}$ B\bar{B} $\end{document}, \begin{document}$ BD $\end{document}, \begin{document}$ D\bar{K} $\end{document}, \begin{document}$ BK $\end{document}, and \begin{document}$ B\bar{D} $\end{document} systems with \begin{document}$ I=0 $\end{document} can exist as bound states. We also studied the contributions from heavy meson (\begin{document}$ J/\psi $\end{document} and \begin{document}$\Upsilon $\end{document}) exchanges and found that the contributions from heavy meson exchanges cannot be ignored.  相似文献   

3.
The physical state of \begin{document}$ \rho-\omega-\phi $\end{document} mesons can be mixed using the unitary matrix. The decay processes \begin{document}$ \omega \rightarrow \pi^{+}\pi^{-} $\end{document} and \begin{document}$ \phi \rightarrow \pi^{+}\pi^{-} $\end{document} originate from isospin symmetry breaking. The \begin{document}$ \rho-\omega $\end{document}, \begin{document}$ \rho-\phi $\end{document}, and \begin{document}$ \omega-\phi $\end{document} interferences lead to a resonance contribution to produce strong phases. \begin{document}$ CP $\end{document} violation is considered from isospin symmetry breaking due to the new strong phase of the first order. \begin{document}$ CP $\end{document} violation can be enhanced greatly for the decay process \begin{document}$ B^{0}\rightarrow \pi^+\pi^{-}\eta^{(')} $\end{document} when the invariant masses of \begin{document}$ \pi^+\pi^{-} $\end{document} pairs are in the area around the \begin{document}$ \omega $\end{document} resonance range and \begin{document}$ \phi $\end{document} resonance range in perturbative QCD. We also discuss the possibility of searching for the predicted \begin{document}$ CP $\end{document} violation at the LHC.  相似文献   

4.
\begin{document}$ CP $\end{document} violation may play an important role in baryogenesis in the early universe and should be examined comprehensively at colliders. We study the \begin{document}$ CP $\end{document} properties of \begin{document}$ HVV $\end{document} vertexes between Higgs and gauge boson pairs by defining a \begin{document}$ CP $\end{document} violation phase angle ξ, which indicates the mixture of \begin{document}$ CP $\end{document}-even and \begin{document}$ CP $\end{document}-odd Higgs states in \begin{document}$ HVV $\end{document} in new physics. A series of \begin{document}$ HVV $\end{document} amplitudes, \begin{document}$ H\to\gamma\gamma, H\to\gamma V\to \gamma \ell\ell $\end{document}, and \begin{document}$ H\to VV\to 4\ell $\end{document}, with a \begin{document}$ CP $\end{document} phase angle are studied systematically to explicitly explain why \begin{document}$ CP $\end{document} violation can only be probed independently in the \begin{document}$ 4\ell $\end{document} process. We obtain a novel amplitude decomposition relation that illustrates that if two preconditions (multilinear momentum dependent vertexes, and the current \begin{document}$ J_\mu $\end{document} of \begin{document}$ V\to \ell^+ \ell^- $\end{document} is formally proportional to a photon's polarization vector) are satisfied, a higher-point amplitude can be decomposed into a summation of a series of lower-point amplitudes. As a practical example, the amplitude of the \begin{document}$ H\to\gamma V\to \gamma \ell\ell $\end{document} and \begin{document}$ H\to VV\to 4\ell $\end{document} processes can be decomposed into a summation of many \begin{document}$ H\to\gamma\gamma $\end{document} amplitudes. We calculate these amplitudes in the framework of the on-shell scattering amplitude method, considering both massless and massive vector gauge bosons with the \begin{document}$ CP $\end{document} violation phase angle. The above two approaches provide consistent results and clearly reveal the \begin{document}$ CP $\end{document} violation ξ dependence in the amplitudes.  相似文献   

5.
The complete fusion reaction of \begin{document}$^{55}$\end{document}Mn + \begin{document}$^{159}$\end{document}Tb was studied on the gas-filled recoil separator SHANS2. Nineteen ER - α\begin{document}$_{1}$\end{document} - α\begin{document}$_{2}$\end{document} decay chains from \begin{document}$^{210}$\end{document}Th produced from the 4n evaporation channel were observed. The α-particle energy and half-life of \begin{document}$^{210}$\end{document}Th were determined as 7922(14) keV and 14(4) ms, respectively. In addition, the decay properties of \begin{document}$E_{\alpha}$\end{document} = 7788(14) keV and \begin{document}$T_{1/2}$\end{document} = 36\begin{document}$^{+15}_{-8}$\end{document} ms were obtained for \begin{document}$^{211}$\end{document}Th. The measured α decay properties of \begin{document}$^{210}$\end{document}Th and \begin{document}$^{211}$\end{document}Th were consistent with literature data. The cross sections were measured to be 0.59\begin{document}$^{+0.25}_{-0.23}$\end{document} nb and 0.19\begin{document}$^{+0.12}_{-0.09}$\end{document} nb for \begin{document}$^{210}$\end{document}Th and \begin{document}$^{211}$\end{document}Th, respectively. The equilibrium charge state of the recoiled nucleus \begin{document}$^{210}$\end{document}Th was determined experimentally. The new data were helpful for estimating the equilibrium charge states of elements 119 and 120, which could be produced via the \begin{document}$^{240}$\end{document}Pu(\begin{document}$^{55}$\end{document}Mn, 3n)\begin{document}$^{292}$\end{document}119 and \begin{document}$^{243}$\end{document}Am(\begin{document}$^{55}$\end{document}Mn, 3n)\begin{document}$^{295}$\end{document}120 reactions, respectively.  相似文献   

6.
The charge exchange spin-dipole (SD) excitations of \begin{document}$ ^{90} $\end{document}Zr are studied using the Skyrme Hartee-Fock plus proton-neutron random phase approximation with SAMi-J interactions. The experimental value of the model-independent sum rule obtained from the SD strength distributions of \begin{document}$ ^{90} $\end{document}Zr(p, n)\begin{document}$ ^{90} $\end{document}Nb and \begin{document}$ ^{90} $\end{document}Zr(n, p)\begin{document}$ ^{90} $\end{document}Y is used to deduce the neutron skin thickness. The neutron skin thickness \begin{document}$ \Delta r_{np} $\end{document} of \begin{document}$ ^{90} $\end{document}Zr is extracted as \begin{document}$ 0.083\pm0.032 $\end{document} fm, which is similar to the results of other studies. Based on the correlation analysis of the neutron skin thickness \begin{document}$ \Delta r_{np} $\end{document} and the nuclear symmetry energy J as well as its slope parameter L, a constraint from the extracted \begin{document}$ \Delta r_{np} $\end{document} leads to the limitation of J to \begin{document}$ 29.2 \pm 2.6 $\end{document} MeV and L to \begin{document}$ 53.3 \pm 28.2 $\end{document} MeV.  相似文献   

7.
In this study, we investigate the two step sequential one pion production mechanism, that is, \begin{document}$ np(I=0)\to $\end{document}\begin{document}$ \pi^-pp $\end{document} followed by the fusion reaction \begin{document}$ pp\to \pi^+d $\end{document}, to describe the \begin{document}$ np\to \pi^+\pi^-d $\end{document} reaction with \begin{document}$ \pi^+\pi^- $\end{document} in state \begin{document}$ I=0 $\end{document}. In this reaction, a narrow peak identified with a "\begin{document}$ d(2380) $\end{document}" dibaryon has been previously observed. We discover that the second reaction step \begin{document}$ pp\to \pi^+d $\end{document} is driven by a triangle singularity that determines the position of the peak of the reaction and the high strength of the cross section. The combined cross section of these two mechanisms produces a narrow peak with a position, width, and strength, that are compatible with experimental observations within the applied approximations made. This novel interpretation of the peak accomplished without invoking a dibaryon explains why this peak has remained undetected in other reactions.  相似文献   

8.
We study the \begin{document}$ B_{c,u,d}\to X(3872)P $\end{document} decays in the perturbative QCD (PQCD) approach, involving the puzzling resonance \begin{document}$ X(3872) $\end{document}, where P represents a light pseudoscalar meson (K or π). Assuming \begin{document}$ X(3872) $\end{document} to be a \begin{document}$ 1^{++} $\end{document} charmonium state, we obtain the following results. (a) The branching ratios of the \begin{document}$ B^+_c\to X(3872)\pi^+ $\end{document} and \begin{document}$ B^+_c\to X(3872) K^+ $\end{document} decays are consistent with the results predicted by the covariant light-front approach within errors; however, they are larger than those given by the generalized factorization approach. (b) The branching ratio of the \begin{document}$ B^+\to X(3872)K^+ $\end{document} decay is predicted as \begin{document}$ (3.8^{+1.1}_{-1.0})\times10^{-4} $\end{document}, which is smaller than the previous PQCD calculation result but still slightly larger than the upper limits set by Belle and BaBar. Hence, we suggest that the\begin{document}$ B^{0,+}\to X(3872)K^{0,+} $\end{document} decays should be precisely measured by the LHCb and Belle II experiments to help probe the inner structure of \begin{document}$ X(3872) $\end{document}. (c) Compared with the \begin{document}$ B_{u,d}\to X(3872)K $\end{document}decays, the \begin{document}$ B_{u,d}\to X(3872)\pi $\end{document} decays have significantly smaller branching ratios, which drop to values as low as \begin{document}$ 10^{-6} $\end{document}. (d) The direct CP violations of these considered decays are small (\begin{document}$ 10^{-3}\sim 10^{-2} $\end{document}) because the penguin contributions are loop suppressed compared to the tree contributions. The mixing-induced CP violation of the \begin{document}$ B\to X(3872)K^0_S $\end{document} decay is highly consistent with the current world average value \begin{document}$ \sin2\beta=(69.9\pm1.7)$\end{document}%. Experimentally testing the results for the branching ratios and CP violations, including the implicit \begin{document}$S U(3)$\end{document} and isospin symmetries of these decays, helps probe the nature of \begin{document}$ X(3872) $\end{document}.  相似文献   

9.
The deformations of multi-\begin{document}$ {\Lambda} $\end{document} hypernuclei corresponding to even–even core nuclei ranging from \begin{document}$ ^8 $\end{document}Be to \begin{document}$ ^{40} $\end{document}Ca with 2, 4, 6, and 8 hyperons are studied using the deformed Skyrme–Hartree–Fock approach. It is found that the deformations are reduced when adding 2 or 8 \begin{document}$ {\Lambda} $\end{document} hyperons, but enhanced when adding 4 or 6 \begin{document}$ {\Lambda} $\end{document} hyperons. These differences are attributed to the fact that \begin{document}$ {\Lambda} $\end{document} hyperons are filled gradually into the three deformed \begin{document}$ p $\end{document} orbits, of which the [110]1/2\begin{document}$ ^- $\end{document} orbit is prolately deformed and the degenerate [101]1/2\begin{document}$ ^- $\end{document} and [101]3/2\begin{document}$ ^- $\end{document} orbits are oblately deformed.  相似文献   

10.
Owing to the significant difference between the experimental measurements and the theoretical predictions of the standard model (SM) for the value of \begin{document}$ {\cal{R}}(D) $\end{document} of the semileptonic decay \begin{document}$ B\to D\ell\bar{\nu}_{\ell} $\end{document}, researchers speculate that this decay may be evidence of new physics beyond the SM. Usually, the D-meson twist-2, 3 distribution amplitudes (DAs) \begin{document}$ \phi_{2;D}(x,\mu) $\end{document}, \begin{document}$ \phi_{3;D}^p(x,\mu) $\end{document} , and \begin{document}$ \phi_{3;D}^\sigma(x,\mu) $\end{document} are the main error sources when perturbative QCD factorization and light-cone QCD sum rules are used to study \begin{document}$ B\to D\ell\bar{\nu}_{\ell} $\end{document}. Therefore, it is important to obtain more reasonable and accurate behaviors for these DAs. Motivated by our previous work [Phys. Rev. D 104, no.1, 016021 (2021)] on pionic leading-twist DA, we revisit D-meson twist-2, 3 DAs \begin{document}$ \phi_{2;D}(x,\mu) $\end{document}, \begin{document}$ \phi_{3;D}^p(x,\mu) $\end{document}, and \begin{document}$ \phi_{3;D}^\sigma(x,\mu) $\end{document}. New sum rule formulae for the \begin{document}$\xi $\end{document}-moments of these three DAs are suggested for obtaining more accurate values. The light-cone harmonic oscillator models for the DAs are improved, and their parameters are determined by fitting the values of ξ-moments via the least squares method.  相似文献   

11.
The W boson mass recently reported by the CDF collaboration shows a deviation from the standard model prediction with an excess at the \begin{document}$ 7\sigma $\end{document} level. We investigate two simple extensions of the standard model with an extra \begin{document}$ U(1) $\end{document} dark sector. One is the \begin{document}$ U(1)_x $\end{document} extension, where the \begin{document}$ U(1)_x $\end{document} gauge field mixes with the standard model through gauge kinetic terms. The other is a general \begin{document}$ U(1)_{\mathbf{A} Y+\mathbf{B} q} $\end{document} extension of the standard model. Fitting various experimental constraints, we find that the \begin{document}$ U(1)_x $\end{document}extension with only kinetic mixing can enhance the W boson mass by 10 MeV at most. The\begin{document}$ U(1)_{\mathbf{A} Y+\mathbf{B} q} $\end{document}extension can easily generate a 77 MeV enhancement of the W boson mass and also offer a viable dark matter candidate with a mass ranging from several hundred GeV to TeV, which may be detected by future dark matter direct detection experiments with improved sensitivities.  相似文献   

12.
We investigate the in-medium masses of open charm mesons (D(\begin{document}$ D^0 $\end{document}, \begin{document}$ D^+ $\end{document}), \begin{document}$ \bar{D} $\end{document}(\begin{document}$ \bar{D^0} $\end{document}, \begin{document}$ D^- $\end{document}), \begin{document}$ D_s $\end{document}(\begin{document}$ {D_{s}}^+ $\end{document}, \begin{document}$ {D_{s}}^- $\end{document})) and charmonium states (\begin{document}$ J/\psi $\end{document}, \begin{document}$ \psi(3686) $\end{document}, \begin{document}$ \psi(3770) $\end{document}, \begin{document}$ \chi_{c0} $\end{document}, \begin{document}$ \chi_{c2} $\end{document}) in strongly magnetized isospin asymmetric strange hadronic matter using a chiral effective model. In the presence of a magnetic field, the number and scalar densities of charged baryons have contributions from Landau energy levels. The mass modifications of open charm mesons result from their interactions with nucleons, hyperons, and the scalar fields (the non-strange field σ, strange field ζ, and isovector field δ) in the presence of a magnetic field. The mass modifications of the charmonium states result from the modification of gluon condensates in a medium simulated by the variation in the dilaton field (χ) in the chiral effective model. The effects of finite quark masses are also incorporated in the trace of the energy-momentum tensor in quantum chromodynamics to investigate the mass shifts of charmonium states. The in-medium masses of open charm mesons and charmonia are observed to decrease with an increase in baryon density. The charged \begin{document}$ D^+ $\end{document}, \begin{document}$ D^- $\end{document}, \begin{document}$ {D_{s}}^+ $\end{document}, and \begin{document}$ {D_{s}}^- $\end{document} mesons have additional positive mass shifts due to Landau quantization in the presence of a magnetic field. The effects of the strangeness fraction are observed to be more dominant for \begin{document}$ \bar{D} $\end{document} mesons compared with D mesons. The mass shifts of charmonia are observed to be larger in hyperonic media compared with nuclear media when the effect of the finite quark mass term is neglected. These medium mass modifications can have observable consequences on the production of the open charm mesons and charmonia in high-energy asymmetric heavy-ion collision experiments.  相似文献   

13.
By solving two body Dirac equations with potentials at finite temperature, we calculate the dissociation temperature \begin{document}$ T_d $\end{document} of \begin{document}$ B_c $\end{document} mesons in quark-gluon plasma. It is found that \begin{document}$ T_d $\end{document} becomes higher with the relativistic correction than the \begin{document}$ T_d $\end{document} from the Schr?dinger equation. Both the short range interaction and the constant term of the potential at the long-range scale have a contribution to the shift of \begin{document}$ T_d $\end{document}, while the spin interaction is negligible.  相似文献   

14.
Recent experiments show that \begin{document}$ \Delta\gamma $\end{document}, an observable designed to detect the chiral magnetic effect (CME), in small collision systems (\begin{document}$ p+A $\end{document}) is similar to that in heavy ion collisions (\begin{document}$ A+A $\end{document}). This introduces a challenge to the existence of the CME because it is believed that no azimuthal correlation exists between the orientation of the magnetic field (\begin{document}$ \Phi_B $\end{document}) and participant plane (\begin{document}$ \Phi_2 $\end{document}) in small collision systems. In this work, we introduce three charge density models to describe the inner charge distributions of protons and neutrons and calculate the electric and magnetic fields produced in small \begin{document}$ p+A $\end{document} collisions at both RHIC and LHC energies. Our results show that the contribution of the single projectile proton is the main contributor to the magnetic field after averaging over all participants. The azimuthal correlation between \begin{document}$ \Phi_B $\end{document} and \begin{document}$ \Phi_2 $\end{document} is small but not vanished. Additionally, owing to the large fluctuation in field strength, the magnetic-field contribution to \begin{document}$ \Delta\gamma $\end{document} may be large.  相似文献   

15.
Aftab Ahmad  Ali Murad 《中国物理C(英文版)》2022,46(8):083109-083109-13
We study the dynamical chiral symmetry breaking/restoration for various numbers of light quarks flavors \begin{document}$ N_f $\end{document} and colors \begin{document}$ N_c $\end{document} using the Nambu-Jona-Lasinio (NJL) model of quarks in the Schwinger-Dyson equation framework, dressed with a color-flavor dependence of effective coupling. For fixed \begin{document}$ N_f = 2 $\end{document} and varying \begin{document}$ N_c $\end{document}, we observe that the dynamical chiral symmetry is broken when \begin{document}$ N_c $\end{document} exceeds its critical value \begin{document}$ N^{c}_{c}\approx2.2 $\end{document}. For a fixed \begin{document}$ N_c = 3 $\end{document} and varying \begin{document}$ N_f $\end{document}, we observe that the dynamical chiral symmetry is restored when \begin{document}$ N_f $\end{document} reaches its critical value \begin{document}$ N^{c}_{f}\approx8 $\end{document}. Strong interplay is observed between \begin{document}$ N_c $\end{document} and \begin{document}$ N_f $\end{document}, i.e., larger values of \begin{document}$ N_c $\end{document} tend to strengthen the dynamical generated quark mass and quark-antiquark condensate, while higher values of \begin{document}$ N_f $\end{document} suppress both parameters. We further sketch the quantum chromodynamics (QCD) phase diagram at a finite temperature T and quark chemical potential μ for various \begin{document}$ N_c $\end{document} and \begin{document}$ N_f $\end{document}. At finite T and μ, we observe that the critical number of colors \begin{document}$ N^{c}_c $\end{document} is enhanced, whereas the critical number of flavors \begin{document}$ N^{c}_f $\end{document} is suppressed as T and μ increase. Consequently, the critical temperature \begin{document}$ T_c $\end{document}, \begin{document}$ \mu_c $\end{document}, and co-ordinates of the critical endpoint \begin{document}$ (T^{E}_c,\mu^{E}_c) $\end{document} in the QCD phase diagram are enhanced as \begin{document}$ N_c $\end{document} increases and suppressed when \begin{document}$ N_f $\end{document} increases. Our findings agree with the lattice QCD and Schwinger-Dyson equations predictions.  相似文献   

16.
In this study, we calculate the transition form factors of \begin{document}$ \Lambda_b $\end{document} decaying into \begin{document}$ \Lambda_c $\end{document} within the framework of light-cone sum rules with the distribution amplitudes (DAs) of the \begin{document}$ \Lambda_b $\end{document}-baryon. In the hadronic representation of the correlation function, we isolate both the \begin{document}$ \Lambda_c $\end{document} and \begin{document}$ \Lambda_c^* $\end{document} states so that the \begin{document}$ \Lambda_b \rightarrow \Lambda_c $\end{document}form factors can be obtained without ambiguity. We investigate the P-type and A-type currents to interpolate light baryons for comparison because the interpolation current for the baryon state is not unique. We also employ three parametrization models for the DAs of \begin{document}$ \Lambda_b $\end{document} in the numerical calculation. We present the numerical predictions for the \begin{document}$ \Lambda_b \rightarrow \Lambda_c $\end{document} form factors and branching fractions, averaged forward-backward asymmetry, averaged final hadron polarization, and averaged lepton polarization of the \begin{document}$ \Lambda_b \to \Lambda_c \ell\mu $\end{document} decays, as well as the ratio of the branching ratios \begin{document}$ R_{\Lambda_c} $\end{document}. The predicted \begin{document}$ R_{\Lambda_c} $\end{document} is consistent with LHCb data.  相似文献   

17.
Pengfei Yang  Wei Chen 《中国物理C(英文版)》2023,47(1):013105-013105-12
Inspired by the LHCb observations of hidden-charm \begin{document}$ P_{c(s)} $\end{document} states, we study their hidden-strange analog\begin{document}$ P_s $\end{document} states in both the \begin{document}$ [udu][\bar ss] $\end{document} and \begin{document}$ [uds][\bar su] $\end{document} configurations. We investigate \begin{document}$ P_s $\end{document} pentaquark states in the \begin{document}$ p\eta^\prime $\end{document}, \begin{document}$ p\phi $\end{document}, \begin{document}$ \Lambda K $\end{document}, \begin{document}$ \Sigma K $\end{document}, and \begin{document}$ \Sigma^\ast K^\ast $\end{document} structures with \begin{document}$J^P ={1}/{2}^-$\end{document} and \begin{document}$ \Sigma ^\ast K $\end{document} and \begin{document}$ \Sigma K^\ast $\end{document} with \begin{document}$J^P = {3}/{2}^-$\end{document} and calculate their masses in the framework of QCD sum rules. Our numerical results show that the extracted hadron masses for all the \begin{document}$ p\eta^\prime $\end{document}, \begin{document}$ p\phi $\end{document}, \begin{document}$ \Lambda K $\end{document}, \begin{document}$ \Sigma K $\end{document}, and \begin{document}$ \Sigma^\ast K^\ast $\end{document} structures are significantly higher than the \begin{document}$ \Sigma K $\end{document} mass threshold, and the masses for \begin{document}$ \Sigma ^\ast K $\end{document} and \begin{document}$ \Sigma K^\ast $\end{document}are also higher than the threshold of the corresponding hadron; hence, no bound state exists in such channels, which is consistent with the current experimental status.  相似文献   

18.
In this study, we used electromagnetic wave data (H0LiCOW, \begin{document}$ H(z) $\end{document}, SNe) and gravitational wave data (Tianqin) to constrain the interacting dark energy (IDE) model and investigate the Hubble tension and coincidence problems. By combining these four types of data (Tianqin+H0LiCOW+SNe+\begin{document}$ H(z) $\end{document}), we obtained the following parameter values with a confidence interval of \begin{document}$ 1\sigma $\end{document}: \begin{document}$ \Omega_m=0.36\pm0.18 $\end{document}, \begin{document}$ \omega_x=-1.29^{+0.61}_{-0.23} $\end{document}, \begin{document}$ \xi=3.15^{+0.36}_{-1.1} $\end{document}, and \begin{document}$H_0=70.04\pm $\end{document}\begin{document}$ 0.42~ {\rm kms}^{-1}{\rm Mpc}^{-1}$\end{document}. According to our results, the best value of \begin{document}$ H_0 $\end{document} shows that the Hubble tension problem can be alleviated to some extent. In addition, the center value of \begin{document}$ \xi+3\omega_x = -0.72^{+2.19}_{-1.19}(1\sigma) $\end{document} indicates that the coincidence problem is slightly alleviated. However, \begin{document}$ \xi+3\omega_x = 0 $\end{document} is still within the \begin{document}$ 1\sigma $\end{document} error range, which indicates that the ΛCDM model is still the model in best agreement with the observational data at present. Finally, we compared the constraint results of the electromagnetic and gravitational waves on the model parameters and found that the constraint effect of electromagnetic wave data on model parameters is better than that of simulated Tianqin gravitational wave data.  相似文献   

19.
Recently, some progress has been made in the experiments on double-heavy tetraquarks, such as \begin{document}$ T_{cc} $\end{document} reported by the LHCb Collaboration and \begin{document}$ X_{cc\bar{s}\bar{s}} $\end{document} reported by the Belle Collaboration. Coming on the heels of our previous work about \begin{document}$ T_{cc} $\end{document} and \begin{document}$ T_{bb} $\end{document}, we present a study on the bound and resonance states of their companions, \begin{document}$ QQ\bar{q}\bar{s} $\end{document} (\begin{document}$ Q=c,b; q=u, s $\end{document}) tetraquarks with strange flavor in the chiral quark model. Two pictures, meson-meson and diquark-antidiquark ones, and their couplings were considered in our calculations. Isospin violation was neglected herein. Our numerical analysis indicated that the states \begin{document}$ cc\bar{u}\bar{s} $\end{document} with \begin{document}$ \dfrac{1}{2}(1^+) $\end{document} and \begin{document}$ bb\bar{u}\bar{s} $\end{document} with \begin{document}$ \dfrac{1}{2}(1^+) $\end{document} are the most promising stable states against strong interactions. Besides, we found several resonance states for the double-heavy strange tetraquarks with the real scaling method.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号