首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 158 毫秒
1.
针对油类污染物成分复杂,光谱重叠难以识别的问题,提出采用三维荧光光谱结合组合算法对油类污染物进行了定性和定量分析。荧光光谱中存在的瑞利散射对三维荧光光谱检测有较大影响,提出了缺损数据修复-主成分分析(MDR-PCA)方法对矿物油三维荧光光谱的瑞利散射进行处理,原理是单个荧光光谱激发发射矩阵符合双线性,可用主成分分析(PCA)法来解析。MDR-PCA法首先将荧光数据中的散射干扰数据全部扣除,之后利用主成分分析(PCA)迭代过程对扣除数据进行重构修复后补全数据。该方法在消除散射干扰的同时充分利用了荧光物质光谱矩阵中的有效信息。利用不同浓度的矿物油的激发-发射荧光光谱构建了三维数据。样品数据来源于柴油、汽油和煤油三种溶质的四氯化碳溶液。常用于三维荧光光谱数据分析的三线性分解算法有平行因子分析(PARAFAC)、交替三线性分解(ATLD)和自加权交替三线性分解算法(SWATLD)等。PARAFAC基于严格意义上的最小二乘原则,具有抗噪声强、模型稳定、微小预期误差等优点,可以实现三维数据阵列的最佳拟合,但该算法收敛速度较慢,对组分数敏感。ATLD算法通过提取对角主元和切尾奇异值求解广义逆,极大提高了收敛速度并降低了对组分数的敏感度,从而实现三线性分解。然而,取对角元时易使ATLD方法对噪声敏感。SWATLD算法既继承了对组分数不敏感、收敛速度快等优点,又降低了噪声水平的影响。但是在抗共线程度方面, SWATLD算法在抵抗共线性程度方面的能力较ATLD略有降低。基于此,论文根据三线性分解算法迭代过程中损失函数的变化,对迭代过程进行划分,提出了三线性迭代方法的组合算法(algorithm combination methodology, ACM)—将ATLD, SWATLD与PARAFAC组合在一起,充分发挥各算法的优点,实现二阶校正算法的优势互补。采用ACM算法对两组分及三组分矿物油样品的三维荧光光谱数据进行解析,并对三种矿物油的回收率进行了计算。柴油的回收率为97.08%,汽油的回收率为97.34%,煤油的回收率为97.25%。解析光谱和回收率表明, ACM算法能够实现油类污染物的种类识别及浓度测量。  相似文献   

2.
应用英国Edinburgh公司生产的FLS920P荧光光谱仪实验测定了诱惑红、日落黄和亮蓝三种合成食品色素混合溶液的三维荧光光谱,将荧光光谱数据应用化学计量学中的平行因子分析(PARAFAC)和交替三线性分解(ATLD)二阶校正算法进行计算处理,对混合合成食品色素溶液中各组分进行了定性和定量检测。应用核一致诊断法,确定主成分数为3。PARAFAC算法解析后的回收率分别为98.75%±8.9%,97.22%±2.9%和99.00%±2.9%,ATLD算法解析后的回收率分别为99.78%±5.9%,92.52%±5.5%和97.23%±5.8%。结果表明,两种方法都可以用于三个组分的直接快速测定,PARAFAC算法更稳定,更具优势。  相似文献   

3.
应用英国Edinburgh公司生产的FLS920P荧光光谱仪实验测定了诱惑红、日落黄和亮蓝三种合成食品色素混合溶液的三维荧光光谱,将荧光光谱数据应用化学计量学中的平行因子分析(PARAFAC)和交替三线性分解(ATLD)二阶校正算法进行计算处理,对混合合成食品色素溶液中各组分进行了定性和定量检测。应用核一致诊断法,确定主成分数为3。PARAFAC算法解析后的回收率分别为98.75%±8.9%,97.22%±2.9%和99.00%±2.9%,ATLD算法解析后的回收率分别为99.78%±5.9%,92.52%±5.5%和97.23%±5.8%。结果表明,两种方法都可以用于三个组分的直接快速测定,PARAFAC算法更稳定,更具优势。  相似文献   

4.
三维荧光光谱技术与自加权交替三线性分解(SWATLD)算法相结合,对三类农药混合溶液进行检测。在乙腈溶剂中配制西维因、速灭威和三唑磷不同浓度比的混合溶液为测量样品(西维因、速灭威及三唑磷的最佳激发波长/发射波长分别为285/325,305/345和265/305 nm),利用荧光光谱仪获取样品的三维荧光光谱,经过空白扣除以及激发与发射校正,有效地去除仪器误差以及散射产生的影响,得到样品的真实光谱。采用基于自加权交替三线性分解算法对测得的光谱数据进行分析,得到的三种农药的平均回收率为96.9%±1.9%,99.8%±1.0%和100.8%±3.2%。根据SWATLD算法预测结果,计算三类农药的预测均方根误差(RMSEP)值为0.616×10-2,0.539×10-2和0.374×10-2 μg·mL-1,低于平行因子(PARAFAC)分析法预测结果的RMSEP值,且最低检测限均在0.005~0.022 μg·mL-1范围内。和PARAFAC算法相比较,突出了SWATLD算法的优势,表明该算法对光谱重叠严重的三类农药混合物有较好的分解能力。  相似文献   

5.
酚类化合物对动植物机理有着严重危害,利用三维荧光光谱结合交替惩罚三线性分解(APTLD)算法,完成了不含干扰物和干扰物共存时激发-发射荧光光谱重叠严重的麝香草酚、对苯二酚和苯酚的直接快速准确定性、定量分析。研究了温度对三种酚类化合物荧光强度的影响。对扫描所得激发-发射矩阵信号(EEM)进行二次去散射和光谱校正预处理,最大程度保留了原光谱信息,避免光谱严重失真。将APTLD算法与平行因子(PARAFAC)和交替三线性分解(ATLD)算法进行对比,突显该算法的优势。实验得出,APTLD算法能够较好的解析荧光光谱数据的重叠峰,分别得到三种目标分析物的荧光光谱,实现快速定性分析;定量分析时平均回收率为(97.4±4.5)%~(103.1±3.0)%;预测均方根误差(RMSEP)低于1.664×10-2 μg·mL-1,且检测限低于国家标准;处理过程简洁快速,为水环境中酚类化合物实现现场检测和在线实时监测提供了有力依据。  相似文献   

6.
基于温度变量的四维荧光光谱的石油类污染物测定   总被引:1,自引:0,他引:1  
三维荧光光谱结合多元校正分析对石油类污染物复杂多组分体系测定方法多谱图混叠,且易受到空白荧光和干扰物荧光影响降低了测定准确性。提出在三维荧光光谱中增加一维温度信息构造激发波长-发射波长-温度-样品(EEM-temperature data array)的四维荧光光谱数据阵列,应用四线性成分模型建立高维荧光光谱定性定量分析的方法。实验证明在15~25 ℃温度范围内,矿物油荧光光谱轮廓形状不随温度变化,而其强度随温度线性变化,满足四线性要求,这为构建四维荧光光谱发展高维数据的三阶校正提取更丰富的有效信息提供了可能。三阶校正不仅可以在干扰物共存的情况下对感兴趣组份进行定量测定,即具有“二阶优势”,还具有更高的选择性和灵敏性,可以对高共线性和背景干扰的重叠光谱表现更好的解析能力,即“三阶优势”。对0#柴油、97#汽油和机油为混合油待测组分,腐殖酸为水体干扰组分组成的复杂体系污染油样品为进行实验,得到的三维荧光光谱利用平行因子(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法进行二阶校正分析,将三维荧光光谱在温度方向上堆叠构成增加温度维度的四维荧光光谱数阵,并将其利用四维平行因子算法(4-PARAFAC)和交替惩罚四线性分解(APQLD)算法进行三阶校正分析,比较,0#柴油、97#汽油和机油的预测结果表明增加了影响荧光光谱的温度因素构造的四维荧光光谱提高了有效信息提取能力,四维荧光光谱结合高阶校正算法能提高油种光谱识别和浓度精确检测,较传统的三维荧光光谱分析提高了回收率(recovery rate)和预测均方根误差(root mean square error of prediction,RMSEP),有利于石油类污染物的有效,准确,实时,绿色环保检测。同时指出了4-PARAFAC和APQLD算法各自的特点及其不同适用环境,为油类污染物检测具体情况提供算法选择依据。引入温度参量的四维荧光光谱结合三阶校正算法的检测技术较三维荧光光谱技术,在组分光谱定性分辨和浓度定量检测方面能对复杂体系油类污染物实现快速有效,绿色无污染地检测,实现“数学分离”更有效代替“化学分离”。  相似文献   

7.
多环芳烃(PAHs)是煤,石油,木材,烟草等燃料和有机高分子化合物等有机物不完全燃烧时产生的一种持久性有机污染物。迄今已发现有200多种PAHs,其中有多种PAHs具有致癌性。PAHs广泛分布于我们生活的环境中,水中的PAHs主要来源于生活污水,工业排水和大气沉降。使用三维荧光光谱法,结合BP神经网络与交替三线性分解(ATLD)算法对水中的PAHs进行定性和定量分析。以苊(ANA)和芴(FLU)2种PAHs为目标分析物,用甲醇(光谱级)制备样本。使用FS920稳态荧光光谱仪对样本进行检测,设置激发波长为200~370 nm,间隔10 nm记录一个数据;发射波长为240~390 nm,间隔2 nm记录一个数据。设置初始发射波长总是滞后激发波长40 nm,以消除一级瑞利散射的干扰。随后使用BP神经网络法对待测样本数据进行预处理。利用BP神经网络基于误差反向传播算法(error back propagation training,BP)原理,对测得的三维荧光数据进行数据压缩处理,该方法具有柔性的网络结构与很强的非线性映射能力,网络的输入层、隐含层和输出层的神经元个数可根据实际情况设定,并且网络的结构不同时,性能也有所差异。随后,用ATLD算法分解预处理后的三维荧光光谱数据。采用核一致诊断法确定待测样本的组分数为2。结果表明,ATLD算法分解得到两种PAHs(ANA和FLU)的激发、发射光谱图与目标光谱非常相似,能实现光谱重叠严重的PAHs(ANA和FLU)的快速定性和定量分析,实现了以“数学分离”代替“化学分离”。将预测样本导入训练好的BP神经网络中,得到处理后待测样本数据的网络均方差(MSE)均小于0.003,网络的峰值信噪比(PSNR)均大于120dB(数据压缩中典型的峰值信噪比值在30~40 dB之间,越高越好),可见BP神经网络对样本数据的压缩效果较好。BP神经网络训练后,得到输出值与目标值之间的拟合度高,拟合系数达0.998,具有较好的数据压缩效果。使用ATLD算法对待测样本进行分解后得到平均回收率为97.1%和98.9%,预测均方根误差为0.081 8和0.098 5 μg·L-1。三维荧光光谱结合BP神经网络和ATLD能够实现痕量PAHs的快速检测。  相似文献   

8.
平行因子法分解成分分析在三维荧光光谱数据中的实现   总被引:2,自引:0,他引:2  
系统分析了PARAFAC法解析立方阵数据的实现过程。以建立PARAFAC模型对湖泊水样三维荧光光谱数据进行荧光物质成分分解为例,通过对核心阵元素分布、核一致函数、模型谱图与原始谱图拟合程度以及拟分解成分物理意义的分析,确定PARAFAC法分解样品荧光物质成分的合理成分数,实现PARAFAC法对荧光物质成分的合理分解与识别。  相似文献   

9.
酚类化合物在冶金、炼油、机械制造、医药、农药和油漆等工业有广泛的应用,但酚类化合物具有毒性,若不加以处理将会对环境造成污染。水是生命之源,水环境中酚类化合物检测显得尤为重要。三维荧光光谱分析法具有灵敏度高、检测速度快、预处理方便和痕量检测等特点,二阶校正分析法可以在混合物中分辨出感兴趣的成分。采用三维荧光光谱结合二阶校正方法对水环境中酚类化合物进行测定。实验选用间甲酚和间苯二酚作为被测物质,配置添加干扰物和不添加干扰物两类样本,通过FLS920稳态荧光光谱仪测得8个校正样本和8个预测样本的三维荧光光谱数据,并对其进行数据预处理,扣除原始光谱中所包含的散射干扰,并对原始光谱数据进行激发/发射校正,然后采用db3小波函数生成的小波包对光谱数据进行数据压缩,去除光谱数据中的冗余信息,其中压缩分数达到91.67%,恢复分数达到96.62%。然后分别采用平行因子分析(PARAFAC)和自加权交替三线性分解(SWATLD)两种二阶校正方法对预处理后的光谱数据进行定性和定量分析。根据核一致分析法结合残差判别分析法的分析结果,设定未添加干扰物样品组分数为2,添加干扰物样品组分数为3。定性分析结果显示,无论有无添加干扰物,两种二阶校正法都能准确的分辨出样本中的间甲酚和间苯二酚,其中间甲酚的荧光峰位置为λem=298 nm/λex=274 nm;间苯二酚的荧光峰位置为λem=304 nm/λex=275 nm。定量分析结果显示,用PARAFAC算法测定不添加干扰物的样本时,对间甲酚和间苯二酚浓度的平均回收率分别达到了93.37%±4.92%和95.19%±5.25%;测定添加干扰物样本时,对间甲酚和间苯二酚浓度的平均回收率达到92.09%±2.64%和97.08%±5.26%。用SWATLD算法测定不添加干扰物样本时,对间甲酚和间苯二酚浓度的平均回收率分别达到了93.11%±4.73%和96.80%±5.04%;测定添加干扰物样本时,对间甲酚和间苯二酚浓度的平均回收率达到97.30%±4.52%和96.92%±5.61%,且两种二阶校正方法得出的预测样本均方差(RMSEP)均小于0.03 mg·L-1。实验结果表明,在荧光光谱峰位置相近、光谱严重重叠且有干扰物的情况下, PARAFAC和SWATLD两种二阶校正算法都能对水溶液中的酚类化合物进行快速、准确地测定。  相似文献   

10.
三维荧光光谱分析法以其灵敏度高、选择性好、操作简单和可用于多组分混合物分析等优点成为诸多研究者在海面溢油鉴别中的热点选择。但三维荧光光谱中存在的瑞利散射会对光谱的准确检测产生较大的影响,因此有效地消除瑞利散射对后续光谱的定性鉴别和定量分析具有重要意义。采用仪器校正法、空白扣除法、 Delaunay三角形内插值法和缺损数据重构(MDR)法对海面溢油三维荧光光谱中的瑞利散射进行校正。首先以海水的SDS胶束溶液作为溶剂,将航空煤油和润滑油按不同相对体积分数比配制8个校正样本和3个测试样本;然后利用FS920稳态荧光光谱仪采集11个样本的三维荧光光谱数据,并分别采用仪器校正法、空白扣除法、 Delaunay三角形内插值法和缺损数据重构(MDR)法消除瑞利散射的干扰;再利用核一致诊断法估计出最佳的组分数;最后利用平行因子分析(PARAFAC)对混合油样本的三维荧光光谱数据进行定性鉴别和定量分析。研究结果表明:采用发射波长滞后激发波长以消除瑞利散射的仪器校正法会丢失部分有效光谱信息;采用空白扣除法无法彻底消除瑞利散射,在光谱中仍然存在散射干扰,利用PARAFAC解析后得到的激发、发射光谱会出现失真,且预测的浓度值偏差较大;采用Delaunay三角形内插值法消除瑞利散射后,利用PARAFAC解析所得到的激发、发射光谱与真实光谱吻合度较高,且预测的浓度值偏差较小;而采用MDR消除瑞利散射后,利用PARAFAC解析所获得的激发、发射光谱与真实光谱吻合度最高,且相较于其他几种方法预测的浓度值偏差最小,得到的样本回收率为98.9%和100%,预测均方根误差均小于等于0.130。根据定性鉴别、定量分析的结果, MDR能够在保证原有特征光谱不失真的基础上有效消除瑞利散射带来的影响,是一种消除三维荧光光谱数据中瑞利散射较为理想的方法。  相似文献   

11.
多环芳烃(PAHs)类物质具有致畸、致癌、致突变的性质,严重污染生态环境,进而对人类的健康及动植物生长造成威胁。PAHs通过排污、大气沉降、地表径流等各种循环途径进入水环境中,由于种类众多且化学性质相似,常规的检测方法如化学滴定法、电化学法等很难实现快速准确的测定。为实现复杂体系中PAHs的定性与定量,工作中基于三维荧光光谱分析法,结合集合经验模态分解(EEMD)去噪与自加权交替三线性分解(SWATLD)二阶校正,对超纯水以及池塘水环境中的苊(ANA)和萘(NAP)进行分析测定。首先选择合理的浓度配制样本,用FS920荧光光谱仪测得样品的三维荧光光谱,利用空白扣除法将光谱数据中的散射消除,得到真实的光谱数据。然后对去除散射的数据进行EEMD降噪处理,该方法具有自适应性强、参数设置简便的优点,能够去除嘈杂信息,提高数据信噪比,并将去噪参数与快速傅里叶变换、小波滤波和经验模态分解进行比较。最后用SWATLD算法以“数学分离”代替“化学分离”,对超纯水和池塘水环境中光谱重叠的ANA和NAP进行定性识别和定量预测,该算法对组分数的选择不敏感,能够在未知干扰物共存情况下实现多组分目标分析物的同时检测,即具有“二阶优势”,并将预测结果与平行因子分析进行比较。结果表明空白扣除法能够成功将拉曼散射消除。EEMD降噪方法使ANA和NAP的光谱更加规整平滑,有效信息更加突出,该方法去噪后数据信噪比为16.845 2,均方根误差为11.136 6,波形相似系数为0.990 9,三项指标均优于快速傅里叶变换和经验模态分解等其他去噪方法,能达到小波滤波的去噪效果并且不用设置先验参数。利用SWATLD二阶校正方法得到验证样本中ANA与NAP的分解光谱与实际光谱基本吻合,平均预测回收率分别为96.4%和104.2%,预测均方根误差分别为0.105和0.092 μg·L-1;在存在未知干扰物的池塘水样本中,分解出的光谱依然能与实际光谱吻合,ANA与NAP两者的平均预测回收率分别为94.8%和105.5%,预测均方根误差分别为0.067和0.169 μg·L-1;与平行因子分析相比,两项指标均具有优势。  相似文献   

12.
水是生命之源,人们日常生产生活离不开水。近年来水体污染日趋严重,已经危害到人类的健康。酚类化合物(Phenolic Compound)是一种广泛存在且很难降解的有机污染物,指的是芳香烃中苯环上的氢原子被羟基取代所生成的含羟基衍生物,毒性很强,对动植物及人类的生命活动有严重危害。实验研究对象选取间苯二酚(resorcinol,RES)和对苯二酚(hydroquinone,HYD)来配制待测样本,并且在其中3组预测样本中加入苯酚(phenol,PHE)作为干扰物,待测样本和空白溶剂分别用FS920稳态荧光光谱仪(edinburgh instruments,EI)扫描得到荧光光谱数据。对所得到的数据通过扣除空白溶剂法来消除拉曼散射的影响,得到的数据在消除干扰的同时最大程度保留下来原光谱所包含的重要信息。校正后光谱变得更加圆滑,荧光强度显著增强,因此,校正处理后的光谱信息更为准确。利用三维荧光光谱(EEM)结合平行因子分析(PARAFAC)和交替惩罚三线性分解(APTLD)两种二阶校正方法,分别完成在不含干扰物和含有干扰物、同时激发-发射光谱严重重叠时对间苯二酚、对苯二酚的快速、直接、准确测量,并给出定性、定量分析结果。PARAFAC算法对混合体系的组分数(即化学秩)较敏感,组分数选取过大易使其陷入计算"沼泽",迭代次数增多,计算耗时变长。故本文利用核一致诊断法(CORCONDIA)预估计出准确的组分数,保证PARAFAC算法更加快速准确。从定性分析结果知,当不含有干扰物时,PARAFAC能够准确分辨出间苯二酚和对苯二酚,二者荧光峰位置极为接近,很难用传统方法分辨,体现出将三维荧光光谱技术与化学计量学二阶校正方法相结合所具有的"二阶优势";定量分析结果给出,在有干扰物共存时,分别应用两种二阶校正法解析光谱数据结果显示:PARAFAC的浓度预测回收率为93.4%±0.5%~97.1%±1.0%,预测均方根误差小于0.190 mg·L^-1;APTLD的浓度预测回收率为95.9%±1.6%~97.2%±0.8%,预测均方根误差小于0.116 mg·L^-1,通过比较两种方法性能得:PARAFAC对待测物组分数敏感,对待分解的光谱数据严格线性要求高;而APTLD对混合物组分数不敏感,计算速度快,抗噪声能力较强,结果稳定,具有较明显的优势。  相似文献   

13.
为准确进行浓度检测,用Savitzky-Golay(SG)多项式曲面平滑法去除三维荧光光谱数据的冗余信息,分别采用平行因子法(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法对光谱数据进行分解。设计多环芳烃类污染物的检测实验,分析了芴(FLU)、苊(ANA)及两者混合溶液的荧光光谱特性。FLU溶液在λ_(ex)/λ_(em)=302/322 nm处存在一个明显的荧光峰,并且存在连续侧峰。ANA溶液存在两个荧光峰,分别为λ_(ex)/λ_(em)=290/322 nm和λ_(ex)/λ_(em)=290/336 nm。在激发波长200~370 nm扫描范围和发射波长240~390 nm扫描范围内,FLU和ANA荧光光谱重叠严重。结果表明,两种算法均能分辨出FLU和ANA,并取得了很高的回收率,但APTLD算法的检测效果更好。  相似文献   

14.
基于三维荧光光谱与有机物特征荧光峰之间的关系,提出利用三维荧光光谱进行聚类,再针对不同类的水样利用紫外-可见全波段吸收光谱数据建立COD预测模型的技术路线。比较分析了平行因子分析(PARAFAC)算法和荧光体积积分(FRI)算法两种不同的光谱分析方法,再使用模糊c-均值(FCM)算法进行聚类,并完成了不同类水样的COD预测模型的建立。研究的水样采集于江苏省常熟市周边的农村区域,样品均来自不同的分散式农村生活污水处理装置出水,共100个实验水样;将测得的水样三维荧光光谱数据经过去散射预处理后利用PARAFAC算法和FRI算法分别提取荧光特征数据;之后,利用FCM聚类算法进行相似性聚类;最后,利用偏最小二乘(PLS)算法建立水样的紫外-可见全波段吸收光谱和COD之间的回归和预测模型,并使用决定系数和均方根误差对模型的预测精度进行评价。研究结果表明:未分类、使用FRI、使用PARAFAC算法提取荧光特征信息后再预测的模型的平均决定系数R2分别为0.632, 0.819和0.906;平均均方根误差RMSE分别为27.857, 23.621和13.071。聚类后的回归和预测...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号