首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
本文通过溶剂热法"一锅"制备了镍掺杂的花状纳米碳片(Ni/FCNAs)。借助X射线衍射仪(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对该复合材料的表面形貌和结构进行了分析。循环伏安和恒流充/放电测试结果表明,Ni/FCNAs具有较大的比电容值且电化学稳定性良好。在电流密度为0.1 A.g-1时,Ni/FCNAs电极的比电容可达176 F.g-1。本文同时也提出了Ni/FCNAs可能的形成机理。  相似文献   

2.
以掺氮空心碳球(N-HCS)为骨架,通过化学氧化聚合法制备了聚苯胺纳米刺/掺氮空心碳球复合材料(PANI/N-HCS),采用扫描电子显微镜、透射电子显微镜和红外光谱仪等对样品的形貌、结构等进行了表征. 采用循环伏安、计时电位和交流阻抗等方法在1 mol/L H2SO4水溶液中考察了材料的电化学性能. 结果表明,PANI/N-HCS具有良好的电化学性能,在0.5 A/g电流密度下,PANI/N-HCS的比电容达346 F/g;当电流密度为20 A/g时,PANI/N-HCS比电容值为228 F/g,电容保持率为66%;在5 A/g电流密度下,经1000次充放电循环后,电容保持率为76%.  相似文献   

3.
储能材料的性能在很大程度上取决于它们的结构和形貌。我们使用简单的溶剂热方法,通过改变溶剂合成了不同形貌的Ni-1,3,5-苯三甲酸(Ni-BTC)和Ni-1,4-苯二甲酸(Ni-BDC)金属有机骨架材料。Ni-BTC有不规则块状、球状和八面体3种形貌,Ni-BDC有纳米片状、花状和不规则块状3种形貌。对Ni-BTC和Ni-BDC作为超级电容器电极材料的性能进行了研究。结果表明,通过溶剂热方法,在N,N-二甲基甲酰胺(DMF)溶剂中合成出的Ni-BTC和Ni-BDC电极材料的超级电容器性能要优于乙醇(EtOH)和DMF/EtOH (50:50,V/V)溶剂。  相似文献   

4.
以廉价的胶态二氧化硅为模板,蔗糖为碳源,硫酸为预碳化试剂和硫源,通过硬模板法制备了相对廉价的硫掺杂多孔碳(SSC-T,T℃代表碳化温度)材料。采用多种表征方法对多孔碳材料的微观形貌、孔道结构、比表面积和表面硫物种进行了表征,探究了硫酸和碳化温度对多孔碳材料的微观形貌、孔道结构和比表面积的影响。结果表明,碳化温度对碳的孔结构、比表面积和硫元素的含量有显著的影响,其中900℃碳化得到的样品SSC-900具有最大的比表面积、孔体积和比电容,远高于未加入硫酸制备的碳材料SC-900,表明硫酸的加入可以提高碳材料的比表面积、孔体积,进而提高碳材料的比电容。与昂贵的有序介孔碳CMK-3相比,SSC-900具有成本更低、孔径更大和电容性能更好的优点。在以6.0 mol·L-1 KOH为电解质的三电极体系中,在0.5 A·g-1的电流密度下,SSC-900的比电容可以达到357 F·g-1,而SC-900和CMK-3的比电容分别仅为152和266 F·g-1。电容贡献分析表明,SSC-900的双层电容值和赝电容值均高于SC-900。此外,SSC-900在0.5 A·g-1的电流密度下循环10 000次后仍能保持98.4%的初始比电容。  相似文献   

5.
以廉价的胶态二氧化硅为模板,蔗糖为碳源,硫酸为预碳化试剂和硫源,通过硬模板法制备了相对廉价的硫掺杂多孔碳(SSC-T,T℃代表碳化温度)材料。采用多种表征方法对多孔碳材料的微观形貌、孔道结构、比表面积和表面硫物种进行了表征,探究了硫酸和碳化温度对多孔碳材料的微观形貌、孔道结构和比表面积的影响。结果表明,碳化温度对碳的孔结构、比表面积和硫元素的含量有显著的影响,其中900℃碳化得到的样品SSC-900具有最大的比表面积、孔体积和比电容,远高于未加入硫酸制备的碳材料SC-900,表明硫酸的加入可以提高碳材料的比表面积、孔体积,进而提高碳材料的比电容。与昂贵的有序介孔碳CMK-3相比,SSC-900具有成本更低、孔径更大和电容性能更好的优点。在以6.0 mol·L-1 KOH为电解质的三电极体系中,在0.5 A·g-1的电流密度下,SSC-900的比电容可以达到357 F·g-1,而SC-900和CMK-3的比电容分别仅为152和266 F·g-1。电容贡献分析表明,SSC-900的双层电容值和赝电容值均高于SC-900。此外,SSC-900在0.5 A·g-1的电流密度下循环10 000次后仍能保持98.4%的初始比电容。  相似文献   

6.
采用简单的溶剂热法合成了混合金属有机骨架材料(MOF (Ni,Co)),然后通过X射线衍射、FT-IR、扫描电子显微镜、X射线光电子能谱和N2吸附-脱附对制备的材料进行了表征,并进一步研究了其作为超级电容器电极材料的性能。结果表明,具有独特的纳米花状结构的MOF (Ni1.2Co0.8)可以提供更多的电活性位点,从而具有优异的电化学性能,在1 A·g-1时的比电容为850 F·g-1。同时本研究工作说明MOF (Ni)电极材料在掺杂适量钴元素后,可增强电极内部电子/离子转移,降低活性物质和电解液之间的接触电阻,提高导电性,增强电化学性能。  相似文献   

7.
以聚碳硅烷(PCS)为原料,通过不同温度高温热解制备碳化硅(SiC)前驱体,将得到的碳化硅前驱体在1 000℃条件下采用氯气刻蚀,成功制备了碳化硅衍生碳(SiC-CDCs)。采用X-射线衍射光谱(XRD)、拉曼光谱(Raman)、透射电子显微镜(TEM)和N2吸附-脱附法等表征方法,研究了热解温度对SiC前驱体及SiC-CDCs的物相、形貌、孔结构和分布的影响;并将制备的材料作为超级电容器的电极材料,测试了其电化学性能。结果表明:采用氯气刻蚀聚碳硅烷热解生成的SiC,可以得到具有较高比表面积和亚纳米孔(<1 nm)的SiC-CDCs;SiC-CDCs用作超级电容器的电极材料,具有较高的比电容且在不同的电流密度下均表现出良好的电容性能。  相似文献   

8.
以聚碳硅烷(PCS)为原料,通过不同温度高温热解制备碳化硅(Si C)前驱体,将得到的碳化硅前驱体在1 000℃条件下采用氯气刻蚀,成功制备了碳化硅衍生碳(Si C-CDCs)。采用X-射线衍射光谱(XRD)、拉曼光谱(Raman)、透射电子显微镜(TEM)和N2吸附-脱附法等表征方法,研究了热解温度对Si C前驱体及Si C-CDCs的物相、形貌、孔结构和分布的影响;并将制备的材料作为超级电容器的电极材料,测试了其电化学性能。结果表明:采用氯气刻蚀聚碳硅烷热解生成的Si C,可以得到具有较高比表面积和亚纳米孔(1 nm)的Si C-CDCs;Si C-CDCs用作超级电容器的电极材料,具有较高的比电容且在不同的电流密度下均表现出良好的电容性能。  相似文献   

9.
以廉价的椰壳为原料制备了高比表面积的多孔碳材料,然后在密闭的反应釜中以硝酸蒸汽对多孔碳材料进行了后处理,制备了亲水性更好的多孔碳材料。采用扫描透射电子显微镜(TEM)、物理吸附、X射线粉末衍射(XRD)、拉曼光谱(Raman)和接触角测试对材料的微观形貌、孔道结构、组成和亲水性进行了表征,探究了不同温度下硝酸蒸汽对多孔碳材料的形貌、结构的影响,并采用循环伏安法、恒电流充放电法和交流阻抗法考察了多孔碳材料的超级电容性能。结果表明,经过硝酸蒸汽处理后的多孔碳材料的比表面积和孔体积均有所降低,且随着处理温度的升高,降低得更加明显,而亲水性却越来越好。电化学测试结果表明,经过100℃硝酸蒸汽处理的多孔碳材料(CSC-100)具有最佳的超级电容性能。在以6 mol·L-1 KOH为电解液的三电极体系中,当电流密度为0.5 A·g-1时CSC-100的比电容可达452.9 F·g-1,而未经硝酸蒸汽处理的多孔碳材料(CSC)的比电容仅为350.4 F·g-1。电容贡献分析表明CSC-100良好的亲水性和表面官能团不仅提高了双电层电容,也提高了赝电容。  相似文献   

10.
以萘为碳源, 采用MgO模板诱导耦合KOH裁剪技术制备了相互连接的多孔碳纳米囊(ICNC). 结果表明所制备的ICNC2具有大的比表面积(1811 m2/g)、 高的压实密度(1.38 g/cm3)和微孔孔容含量(58.93%). 在对称的超级电容器(SC)中, ICNC2电极的体积比容在不同电流密度下分别高达420.8 F/cm3(0.069 A/cm3)和315 F/cm3(27.6 A/cm3), 容量保持率为74.82%. 在38 W/L功率密度下, ICNC2基SC的体积能量密度为14.6 W?h/L. 经过20000次循环后, 其体积比容仅衰减1.4%, 库伦效率为99.1%, 为从萘基小分子制备储能用功能碳材料提供了一种可行的方法.  相似文献   

11.
碳气凝胶的孔结构及其对电化学超级电容器性能的影响   总被引:1,自引:0,他引:1  
通过改变碳气凝胶的溶胶-凝胶制备条件和炭化活化工艺,实现了对碳气凝胶纳米孔洞结构的控制.采用扫描电子显微镜(SEM)和氮气等温气体吸附法对碳气凝胶和KOH活化碳气凝胶的形貌和孔结构进行了表征和分析,并且使用循环伏安法(CV),恒流充放电,电化学阻抗谱(EIS)等检测技术评价了电化学性能.结果表明:发达的三维纳米网络结构与合理的孔径分布是影响碳气凝胶电化学超级电容器性能的关键因素.经适度活化后的碳气凝胶材料含有丰富的介孔,比表面积可达1480m2·g-1.在6mo·lL-1的KOH溶液中,在100mV·s-1的扫描速率下其比电容量高达216F·g-1.通过拟合发现,碳气凝胶类材料的大孔和介孔拥有更高的单位面积比电容量.  相似文献   

12.
利用苯胺原位化学聚合合成聚苯胺包覆碳纳米管(CNTs), 再炭化处理制备氮掺杂碳纳米管(NCNTs).激光拉曼(Raman)光谱和X射线光电子谱(XPS)分析及透射电镜(TEM)观察表明, 苯胺包覆碳纳米管经炭化处理后, 得到以碳纳米管为核、氮掺杂碳层为壳, 具有核-壳结构的氮掺杂碳纳米管, 而碳纳米管本征结构未遭破坏. 研究表明, 随着苯胺用量的增大, 氮掺杂碳纳米管的氮掺杂碳层变厚, 氮含量从7.06%(质量分数)增加到8.64%, 而作为超级电容器电极材料, 随着氮掺杂碳层厚度降低, 氮掺杂碳纳米管在6 mol·L-1氢氧化钾电解液中的比容量从107 F·g-1增大到205 F·g-1, 远高于原始碳纳米管10 F·g-1的比容量, 且聚苯胺改性氮掺杂碳纳米管表现出较好的充放电循环性, 经1000次充放电循环后仍保持初始容量的92.8%~97.1%, 表明氮掺杂碳纳米管不仅通过表面氮杂原子引入大的法拉第电容和改善亲水性使电容量显著增大, 其具有的核壳结构特征也使循环稳定性增强。  相似文献   

13.
利用天然生物质杨絮特殊的管状结构通过简单的高温碳化法制备出碳微米管(CMTs). 将所得到的碳微米管作为基底, 采用化学气相沉积法制备出三维结构的碳微米管/碳纳米管(CNTs)复合材料. 利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)光谱仪、拉曼光谱仪对其进行了详细分析. 通过两电极测试体系对其超级电容性能进行测试, 碳微米管/碳纳米管复合电极在1 mol·L-1Li2SO4电解液中的比电容值可达77 F·g-1, 远大于碳微米管的比电容值(23 F·g-1).  相似文献   

14.
以氧化处理的新疆库车原煤、聚丙烯腈(PAN)和N,N-二甲基甲酰胺(DMF)为原料,通过静电纺丝法制备了直径均匀的煤基纳米碳纤维前驱体,经高温碳化、CO2活化得到煤基超级电容器电极材料.使用X射线能谱仪、物理吸附仪、扫描电子显微镜、红外光谱仪和热分析仪等对前驱体及产物进行了表征.结果表明,原煤经过高锰酸钾氧化处理后,部分连接大分子的烷基链被打断,含氧基团明显增多,使原煤在DMF中的溶解度大幅提高.电化学测试结果表明,在电流密度为1 A/g时,煤基活化碳纤维的比电容为259.7F/g,在1000次循环充放电后比电容仍然保持99.2%.  相似文献   

15.
用于超级电容器电极材料的聚苯胺基碳(英文)   总被引:1,自引:0,他引:1  
在不同温度下碳化硫酸掺杂的聚苯胺制备了含杂原子(氮和氧原子)的新型碳材料.分别通过扫描电镜、元素分析仪、X射线光电子能谱仪和比表面积测试仪对这些碳材料的形貌特征、元素组成、表面化学组成和比表面积进行了表征.用循环伏安法、恒电流充放电法和交流阻抗法对其进行了电化学性能的研究.研究结果表明,在温度为800℃下碳化聚苯胺得到的碳有很好的电化学性能,尽管它的比表面积很小(325m·2g-1),但在0.5A·g-1电流密度下其比电容高达153F·g-1.它的高比电容可能与其含有合适比例的杂原子(氮和氧原子)有关,因为合适比例的氮和氧杂原子能够产生最大的赝电容.这些结果表明这种碳材料是一种很有发展前景的超级电容器电极材料.  相似文献   

16.
溶剂热法合成不同形貌的Co3O4及其电容特性   总被引:3,自引:0,他引:3  
采用溶剂热法以不同的钴盐在水-正丁醇体系中合成了不同形貌及尺寸的纳米Co3O4. 采用XRD和TEM对产物的物相和形貌进行表征. 结果表明, 通过改变反应体系中阴离子的种类, 可以控制产物Co3O4的形貌与晶粒尺寸. 通过循环伏安法、恒流充放电和交流阻抗法对Co3O4电极材料的电化学性能进行表征. 结果表明, Co3O4的形貌与晶粒尺寸对其电化学性能有显著影响. 在2 mol·L-1 KOH溶液中, 在-0.40 - 0.55 V (vs SCE)电位范围内, 由Co(NO3)2制备的球形Co3O4表现出更好的电容特性,单电极初始比容量达362.0 F·g-1, 经过400 次循环后比容量仍保持90%.  相似文献   

17.
Due to ever-increasing global energy demands and dwindling resources, there is a growing need to develop materials that can fulfil the World's pressing energy requirements. Electrochemical energy storage devices have gained significant interest due to their exceptional storage properties, where the electrode material is a crucial determinant of device performance. Hence, it is essential to develop 3-D hierarchical materials at low cost with precisely controlled porosity and composition to achieve high energy storage capabilities. After presenting the brief updates on porous carbons (PCs), then this review will focus on the nitrogen (N) doped porous carbon materials (NPC) for electrochemical supercapacitors as the NPCs play a vital role in supercapacitor applications in the field of energy storage. Therefore, this review highlights recent advances in NPCs, including developments in the synthesis of NPCs that have created new methods for controlling their morphology, composition, and pore structure, which can significantly enhance their electrochemical performance. The investigated N-doped materials a wide range of specific surface areas, ranging from 181.5 to 3709 m2 g−1, signifies a substantial increase in the available electrochemically active surface area, which is crucial for efficient energy storage. Moreover, these materials display notable specific capacitance values, ranging from 58.7 to 754.4 F g−1, highlighting their remarkable capability to effectively store electrical energy. The outstanding electrochemical performance of these materials is attributed to the synergy between heteroatoms, particularly N, and the carbon framework in N-doped porous carbons. This synergy brings about several beneficial effects including, enhanced pseudo-capacitance, improved electrical conductivity, and increased electrochemically active surface area. As a result, these materials emerge as promising candidates for high-performance supercapacitor electrodes. The challenges and outlook in NPCs for supercapacitor applications are also presented. Overall, this review will provide valuable insights for researchers in electrochemical energy storage and offers a basis for fabricating highly effective and feasible supercapacitor electrodes.  相似文献   

18.
以导电玻璃FTO为基底电极, 在硫酸溶液中, 分别研究了苯胺单体浓度和恒定电流大小对聚苯胺(PANI)形貌的影响; 同时恒定苯胺单体的浓度和工作电流, 探究了不同类型的质子酸对PANI阵列形貌的影响. 结果表明, 采用恒电流方法可以制备出一维有序PANI纳米线阵列, 而且当苯胺的浓度为0.1 mol/L, 恒电流法的工作电流密度为0.03 mA/cm2时, 所制备的PANI纳米线阵列形貌最佳; 当用HCl, HNO3和对甲苯磺酸(p-TSA)作为合成PANI的支持液时, 得到树桩状的PANI 纳米结构, 不能得到均一的纳米线阵列结构. 电化学性能测试结果表明, 制备的最佳形貌PANI纳米线阵列的比电容值可达560 F/g; 循环1000周后电容损失率为11%.  相似文献   

19.
The nitrogen and oxygen co-doped hollow carbon spheres(HCSs) were prepared via a simple pyrolysis of solid melamine-formaldhyde resin spheres. The carbonization temperature has an important influence on the specific surface area, pore-size distribution and heteroatom contents of HCSs. The synergistic effects of those physical and chemical properties on supercapacitor performance were systematically investigated. Among the HCSs obtained at different temperatures, HCSs-800(co-doped HCSs at 800 ℃) exhibits the best reversible specific capacitance in 2 mol/L H2SO4 electrolyte and meanwhile maintains a high-class capacitance retention capability. The nitrogen heteroatoms were confirmed to play a crucial role in improving capacitance in an acid medium. This kind of nitrogen doped HCSs is a potential candidate for an efficient electrode material for supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号