首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Recently, smart surfaces with switchable wettability have aroused much attention. However, only single surface chemistry or the microstructure can be changed on these surfaces, which significantly limits their wetting performances, controllability, and applications. A new surface with both tunable surface microstructure and chemistry was prepared by grafting poly(N‐isopropylacrylamide) onto the pillar‐structured shape memory polymer on which multiple wetting states from superhydrophilicity to superhydrophobicity can be reversibly and precisely controlled by synergistically regulating the surface microstructure and chemistry. Meanwhile, based on the excellent controllability, we also showed the application of the surface as a rewritable platform, and various gradient wettings can be obtained. This work presents for the first time a surface with controllability in both surface chemistry and microstructure, which starts some new ideas for the design of novel superwetting materials.  相似文献   

2.
Control of surface wettability is very important, and can be realized by controlling surface chemistry or microstructures. Compared with surface chemistry, smart control of surface microstructure is more difficult. Recently, shape memory polymers (SMPs) have advanced to allow control of the surface microstructure and wettability, and thus, demonstrate excellent controllability and many novel functions. In this Minireview, recent achievements in wetting control on SMP surfaces with general hydrophobic, superhydrophobic, superomniphobic and superslippery properties are presented. Particular attention is paid to superhydrophobic surfaces, which display many novel functions, such as switchable isotropic/anisotropic wetting and reprogrammable gradient wetting. Furthermore, a new strategy that combines responsive molecules with the SMP microstructure is also described; this can be used to realize precise wetting control based on coordinated regulation of both surface microstructure and chemistry.  相似文献   

3.
Superhydrophobic surfaces with expanded wetting behaviors, like tunable adhesion, hybrid surface hydrophobicity and smart hydrophobic switching have attracted increasing attention due to their broad applications. Herein, the construction methods, mechanisms and advanced applications of special superhydrophobicity are reviewed, and hydro/superhydrophobic modifications are categorized and discussed based on their surface chemistry, and topographic design. The formation and maintenance of special superhydrophobicity in the metastable state are also examined and explored. In addition, particular attention is paid to the use of special wettability in various applications, such as membrane distillation, droplet-based electricity generators and anti-fogging surfaces. Finally, the challenges for practical applications and future research directions are discussed.  相似文献   

4.
This paper presents the experimental results and analyses on a controlled manipulation of liquid droplets upon local reduction and oxidation (redox) of a smart polymer-dodecylbenzenesulfonate doped polypyrrole (PPy(DBS)). The electrochemically tunable wetting property of PPy(DBS) permitted liquid droplet manipulation at very low voltages (-0.9 to 0.6 V). A dichloromethane (DCM) droplet was flattened upon PPy(DBS) reduction. It was found that the surface tension gradient across the droplet contact line induced Marangoni stress, which caused this deformation. Further observation of PPy(DBS)'s color change upon the redox process confirmed that the surface tension gradient was the driving force for the droplet shape change.  相似文献   

5.
The wetting behavior of solid surfaces can be altered dramatically by introducing surface roughness on the nanometer scale. Some of nature's most fascinating wetting phenomena are associated with surface roughness; they have inspired both fundamental research and the adoption of surface roughness as a design parameter for man-made functional coatings. So far the attention has focused primarily on macroscopic surfaces, but one should expect the wetting properties of colloidal particles to be strongly affected by roughness, too. Particle wettability, in turn, is a key parameter for the adsorption of particles at liquid interfaces and for the industrially important use of particles as emulsion stabilizers; yet, the consequence of particle roughness for emulsion stability remains poorly understood. In order to investigate the matter systematically, we have developed a surface treatment, applicable to micrometer-sized particles and macroscopic surfaces alike, that produces surface coatings with finely tunable nanoscale roughness and identical surface chemistry. Coatings with different degrees of roughness were characterized with regard to their morphology, charging, and wetting properties, and the results were correlated with the stability of emulsions prepared with coated particles of different roughness. We find that the maximum capillary pressure, a metric of the emulsions' resistance to droplet coalescence, varies significantly and in a nonmonotonic fashion with particle roughness. Surface topography and contact angle hysteresis suggest that particle roughness benefits the stability of our emulsions as long as wetting occurs homogeneously (Wenzel regime), whereas the transition toward heterogeneous wetting (Cassie-Baxter regime) is associated with a loss of stability.  相似文献   

6.
In this work, a bilayer shape memory polymer (SMP) composite plate with two-way shape memory behavior is simulated, in which two types of styrene-based SMPs with well-separated glass transition temperatures are assembled in parallel. The finite element (FE) software ABAQUS is selected to exhibit the two-way shape memory effect during the shape recovery step and the Generalized Maxwell Model with the WLF equation is applied to characterize the temperature-dependent properties of the SMP bilayer plates. The effect factors of axial predeformation, thermal expansion coefficient and plate thickness are all considered for the two-way shape memory behavior of the styrene-based bilayer SMP plate. After that, a smart gripper composed of four SMP composite plates is proposed to realize grabbing and releasing functions for one-step and staged heating recovery. The FE results provide some necessary theoretical guidelines for future soft smart structural designs and optimization.  相似文献   

7.
Shape memory polymer (SMP) such as cross-linked low-density polyethylene (XLDPE), can return from its temporary shape to the original (permanent) shape upon heating. SMP in comparison with shape memory alloy (SMA) and shape memory ceramic (SMC) has lower stiffness, so generates lower recovery force when it is being used as an actuator. Also, when SMP is reinforced with traditional micro-fillers, it often loses its shape memory effect due to the high weight fraction of filler (20-30%). To overcome these disadvantages, nanoclays can be used. The smart resultant nanocomposite, even in small clay loading level (0-10 wt.%), shows higher modulus, strength, and the other physical properties such as higher recovery force, required to act as an actuator.In this work, the effect of modified montmorillonite on mechanical and shape memory properties as well as the force generation of a shape memory cross-linked low density polyethylene were investigated.The results show that the modulus of elasticity, the recovery temperature, the recovery force and force recovery rate increase with increasing organoclay in nanocomposites, but final recovery strain decreases slightly.  相似文献   

8.
超分子化学和界面的结合有效地促进了超分子化学和胶体与界面科学的发展。刺激响应性超分子界面,因在外界刺激作用下能够引起界面物理化学性质的改变并带来新的界面功能,而受到广泛的关注。近年来,溶液中基于偶氮苯 环糊精主客体相互作用的超分子组装体已经得到了广泛的研究。我们将溶液中基于偶氮苯环糊精主客体作用的可控可逆超分子组装体转移到界面上,构筑了具有刺激响应性的功能化超分子界面,并实现了表面浸润性的可逆调控、生物大分子的可控吸附与脱附、光可控的生物电化学催化等功能。我们期待类似的概念可以拓展到其他超分子体系,构筑具有特定结构的功能界面。  相似文献   

9.
Thermoplastic polyurethanes (TPU) are a popular family of shape memory polymers (SMP) due to their excellent abrasion & weather resistant, and mechanical strength. However, conventional processing operations or their combination with other polymers by adhesion or blending can affect their unique shape memory behavior. Currently, there are no effective methods to study and quantify the shape memory behavior of SMP based polymer laminates as they would respond to deep drawing operations. In this paper, a new method was introduced to effectively quantify the recovery behavior of TPU based polymer laminates undergoing simultaneous stretching and bending operations at different processing temperatures. The results presented show the value of developing a shape recovery characterization method that resembles the stresses of thermoforming to properly assess formability of shape memory polymers used in laminate constructions.  相似文献   

10.
Wetting of a sessile droplet on structured or patterned surface can be found in a broad range of applications. The researchers have been promoted to keep working on the topic. The review is on the basis of the recent experimental advances on the sessile droplet wetting on the hydrophobic, hydrophilic, or combined hydrophobic and hydrophilic surfaces under isothermal conditions, and on heating or cooling substrates having nonisothermal conditions. More attention has been paid on the wetting configuration between the sessile droplet and the structured substrate; the research gap has been discussed on identifying the three-phase line shape. Further, the three-dimensional measurement for the sessile droplets on the patterned surfaces with focusing more on the contact line of sessile droplets might reveal new physical insights. This review targets at building a holistic overview on the sessile droplet wetting behaviors on the structured substrate in the past 2 years.  相似文献   

11.
将磁性粒子与形状记忆聚合物复合,通过设计渐变式构型构筑了梯度形状磁性材料,并与润滑涂层相结合,制备了一种磁性润滑表面.在磁性梯度的作用下,超顺磁液滴在表面上能够自发定向运动.借助于材料形状记忆效应对表面区域形态进行可逆调控,进一步展示了超顺磁液滴自发定向运动过程中的启停开关式控制,实现了将液滴定向自发运输与启停控制相结合.考察了磁性粒子含量对材料形状记忆性能的影响,以及区域形态调控尺寸与液滴滑动性能间的相互关系.机理分析进一步阐明磁场梯度提供的定向驱动力促使液滴定向自发输运,表面区域形态控制的可逆调控则可以在液滴运动过程中增加/消除黏滞阻力,基于两种因素的协同作用,可以实现对超顺磁液滴运动的智能操控.  相似文献   

12.
Using adaptive soft materials to fabricate microstructured surfaces renders them with tunable topographic feature and thus controllable physical properties. Here, light responsive microstructured surfaces are reported with shape memory and tunable wetting behaviors; the surfaces are covered with micropillar arrays and constructed by lightly crosslinked azo‐containing liquid crystalline network (LCN). UV light irradiation induces 25% contraction in length of the micropillars along their long axes and, as a consequence, the variations of topographic feature and wetting behavior of the surfaces. In addition, the LCNs exhibit shape memory properties, which can freeze the temporary topographic feature of microstructured surfaces (formed under UV irradiation and relatively high temperature) and enable application of their functionalities at mild conditions. This light responsiveness makes it feasible to remotely and precisely tune the local regions of microstructured surfaces, which should broaden the applications of adaptive surfaces in regulating the wetting, optical, and adhesion properties in selected regions.

  相似文献   


13.
Self-propelled droplets are a class of active matter systems composed of one fluid dispersed in another immiscible fluid. Despite the inherent spherical symmetry in the initial droplet shape and composition, self-propulsion in these systems is achieved by a spontaneous symmetry-breaking bifurcation. Either a chemical reaction, micelle-induced solubilization, or a phase transition may induce gradients in the interfacial tension, generating a Marangoni convection and thereby resulting in self-propulsion. The simplicity associated with these self-propelled droplet systems makes them excellent candidates for investigating the solitary and collective behaviour of several biological swimmers, ranging from single-celled bacteria to school of fishes. Additionally, due to their tunable mobility characteristics, these swimmers have immense potential as smart materials designed to execute intricate tasks in microscopic domains. In this review, we present state-of-the-art experimental and theoretical research relevant to self-propelled swimming droplets.  相似文献   

14.
Epoxies are an important family of shape memory polymers (SMP) due to their excellent stability and thermo-mechanical endurance and the high values of shape fixity and shape recovery. Actuators based on these materials can be designed for large tensile elongations (e.g., 75% or higher) or large recovered stresses (e.g., 3 MPa or higher). However, meeting these requirements simultaneously is a difficult task because changes in the crosslink density affect both variables in opposite ways. We show that an SMP based on an epoxy network with both chemical and physical crosslinks could be strained up to 75% in four repeated shape memory cycles with tensile stresses close to 3 MPa. Shape fixity and shape recovery values were close to 98% and 96%, respectively, for everyone of the cycles, without any significant change between the first and subsequent cycles.  相似文献   

15.
Polystyrene-poly(acrylic acid) (PS-PAA) block copolymers polymerized by atom transfer radical polymerization were covalently grafted to both smooth and microtextured surfaces. These amphiphilic copolymers were utilized to create smart surfaces, which can be responsive to external stimuli, e.g., pH values or organic solvent. Atom force microscopy, field emission scanning electron microscopy, and contact angle measurements were employed to investigate the physiochemical features of the copolymer brushes. It was found that the wettability of surfaces depended on both the PS/PAA molar ratio and external solvent properties. Hydrophilic surfaces were obtained after treatment with basic solution, as well as a polar solvent, such as ethanol. With treatment with acidic solution or toluene, the surface could be reversibly turned relatively hydrophobic, probably due to the rearrangement or reorganization of polymer chains. Moreover, rougher surfaces, which were microtextured by ZnO nanorods, were incorporated into this adaptive system to enhance the tunable range of wettability.  相似文献   

16.
采用模板法在形状记忆聚合物表面获得一种具有形状记忆特征的表面微结构, 在氧等离子作用下, 表面呈现低黏附的水下超疏油特性. 在外压作用下, 表面微结构发生坍塌, 失去水下超疏油性, 同时表面对油滴呈高黏附特征. 在120 ℃热处理后, 表面微结构恢复到了原始状态, 在等离子进一步作用下, 表面即可恢复到最初的低黏附水下超疏油状态. 因此通过外压、 热处理及等离子作用即可实现对表面微结构及其水下油黏附性能的可逆调控. 研究表明, 表面不同的微结构状态赋予表面不同的黏附性能, 在原始表面液滴处于低黏附的Cassie态, 而在坍塌结构表面水滴处于高黏附的Wenzel态.  相似文献   

17.
Coalescence of a falling droplet with a stationary sessile droplet on a superhydrophobic surface is investigated by a combined experimental and numerical study. In the experiments, the droplet diameter, the impact velocity, and the distance between the impacting droplets were controlled. The evolution of surface shape during the coalescence of two droplets on the superhydrophobic surface is captured using high speed imaging and compared with numerical results. A two-phase volume of fluid (VOF) method is used to determine the dynamics of droplet coalescence, shape evaluation, and contact line movement. The spread length of two coalesced droplets along their original center is also predicted by the model and compared well with the experimental results. The effect of different parameters such as impact velocity, center to center distance, and droplet size on contact time and restitution coefficient are studied and compared to the experimental results. Finally, the wetting and the self-cleaning properties of superhydrophobic surfaces have been investigated. It has been found that impinging water drops with very small amount of kinetic impact energy were able to thoroughly clean these surfaces.  相似文献   

18.
We report the facile fabrication of a functional nanoporous multilayer film with wettability that is reversibly tunable between superhydrophobicity and superhydrophilicity with UV/visible irradiation. Our approach controls surface roughness with an electrostatic self-assembly process and makes use of the photoresponsive molecular switching of fluorinated azobenzene molecules. Selective UV irradiation onto the nanostructured substrate was used to realize substrates with erasable and rewritable patterns of extreme wetting properties. Our findings will open up new avenues for external stimuli-responsive smart surfaces.  相似文献   

19.
Shape memory polymers (SMP) exhibit temperature, frequency and strain rate dependent properties which may be manipulated by various types of external stimuli to achieve desirable response characteristics. In recent years, the emphasis has been on designing SMPs which do not require external stimuli (such as a heat source) and have a rapid response time with large homogenous and reversible deformation characteristics. In this research, the fabrication process and dynamic vibration testing of an electrically activated SMP are presented. It is shown that conductive SMP beams can be fabricated to achieve tunable stiffness and damping with a reasonable thermal gradient generated by electrical triggering. This can allow the tuning of a range of frequency bandwidth and damping properties of SMPs for vibration control applications. The experimentation yielded modal properties (natural frequencies and damping) of the SMP beams. These parameters were validated against values obtained from the estimated performance of these beams based on the complex modulus parameters obtained using dynamic mechanical analysis (DMA). For a modest 20 °C temperature range in an epoxy based SMP, a resulting shift of approximately 7% in the natural frequency and 100% change in the damping ratio of a rectangular beam was successfully attained. These results recommend SMPs as being tunable materials that can enhance vibrational performance and expand the operational envelope of structures.  相似文献   

20.
The goal of this work is to study via molecular simulations the wetting kinetics of a rough surface by an oily fluid. We use forward flux sampling to compute the wetting transition rate and elucidate the transition mechanism of a small droplet on a surface of nails. The nails provide the re-entrant geometry necessary to keep the droplet in the nonwetted, composite state. The effects of nail height, droplet size, and surface chemistry are investigated. Because the droplet must touch the bottom surface to transition, increasing the nail height is an effective way to increase the barrier to wetting for both phobic and slightly philic drops, although as the fluid becomes very philic, chemistry dominates and the effect of nail height disappears. Generally, smaller drops transition more easily. Overall, our results suggest that nonwettability could be practically enhanced by promoting the "kinetic" trapping of the system in the nonwetted state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号