首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An ion chromatography method for rapid and direct determination of iodide in seawater and edible salt is reported. Separation was achieved using a laboratory-made C30 packed column (100 mm x 0.32 mm i.d.) modified with poly(ethylene glycol) (PEG). Effects of eluent composition on retention behavior of inorganic anions have been investigated. Both cation and anion of the eluent affected the retention of analyte anions. The retention time of anions increased with increasing eluent concentration when lithium chloride, sodium chloride, potassium chloride, sodium sulfate, magnesium sulfate were used as the eluent, while it decreased with increasing eluent concentration when ammonium sulfate was used as the eluent. The detection limit for iodide obtained by injecting 0.2 microl of sample was 9 microg/l (S/N = 3). The present method was successfully applied to the rapid and direct determination of iodide in seawater and edible salt samples. Partition may be involved in the present separation mode.  相似文献   

2.
An ion chromatographic method for rapid and direct determination of iodide in seawater samples is reported. Separation was achieved using a laboratory-made C30 packed column (100 mm × 0.32 mm i.d.) modified with polyoxyethylene oleyl ether, with an aqueous solution of 300 mM sodium chloride as eluent and using UV detection at 220 nm. Samples containing iodate, nitrate, iodide and thiocyanate were eluted within 8 min, and the relative standard deviations of the retention time, peak area and peak height were all smaller than 4.19% for all of the analyte anions. Effects of eluent composition on retention behavior of inorganic anions have been investigated. Both cation and anion of the eluent affected the retention time of analytes. When inorganic eluents, such as ammonium chloride, ammonium sulfate, lithium chloride, sodium chloride, sodium sulfate, magnesium chloride and magnesium sulfate were used, the retention time of analytes increased with increasing eluent concentration. The limit of detection of iodide was 19 μg l−1 (S/N = 3), while the limit of quantitation was 66 μg l−1 (S/N = 10). The present method was successfully applied to the rapid and direct determination of iodide in seawater samples.  相似文献   

3.
Summary Retention behavior of anions and cations on anion-exchangers modified with dextran sulfate has been investigated. Retention of anions was remarkably reduced by the modification, and the retention factor decreased with decreasing eluent concentration when sodium sulfate was used as the eluent. Cations were also retained on the modified stationary phase, and alkali and alkaline-earth metal ions were separated using copper sulfate or tris(2,2′-bipyridyl)ruthenium chloride as eluent. The size of the dextran sulfate strongly affected the retention behavior of analyte ions.  相似文献   

4.
Effects of eluent composition on retention behavior of inorganic anions have been investigated in ion chromatography using anion-exchangers modified with heparin. Both cation and anion of the eluent affected the retention of analyte anions and unusual retention behavior was observed on the modified stationary phase. The retention time of anions decreased with decreasing eluent concentration when sodium sulfate, magnesium sulfate and chlorides of alkali metals were used as the eluent, whereas it increased with decreasing eluent concentration when aluminum sulfate, copper sulfate and sulfuric acid were used as the eluent. The retention of nitrate increased in the order of Li+, Na+, K+, Rb+ and Cs+ when their chlorides were used as the eluent. When sodium perchlorate and chlorides of alkaline-earth metals were used as the eluent, the eluent should include heparin. Otherwise, the modifier was partially bled from the column.  相似文献   

5.
Takeuchi T  Lim LW 《Analytical sciences》2011,27(10):1019-1023
Inorganic anions were separated on a reversed-phase stationary phase dynamically modified with crown ether as a selector in capillary ion chromatography. The eluent contained crown ether, acetonitrile and a salt. Free and cation-trapped crown ether molecules in the eluent were adsorbed on a hydrophobic stationary phase such as triacontyl-functionalized silica (C30). The eluent cations trapped on crown ether worked as the ion-exchange sites, where the eluent anions and the analyte anions were competing for electrostatic interaction. The sizes of crown ether and the salt cation affected the retention of analyte anions. The concentrations of acetonitrile and crown ether as well as the eluent anion also affected the retention of analyte anions. An aqueous solution containing 18-crown-6-ether, potassium salt and acetonitrile achieved larger retention for analyte anions. Effects of the eluent conditions on the retention of analyte anions were examined in detail.  相似文献   

6.
The present article reviews the use of polyethylene glycol (PEG) or polyoxyethylene (POE) as the stationary phase for the separation of inorganic anions in ion chromatography and discusses about the retention mechanisms involved in the separation of anions on the novel stationary phases. PEG permanently coated on a hydrophobic stationary phase retained anions in the partition mode and allowed us to use high-concentration eluents because the retention of anions increased with increasing eluent concentration for most of the eluents. This situation was convenient to determine trace anions contained in seawater samples without any disturbance due to matrices. Chemically bonded POE stationary phases retained not only anions but also cations. Anions were retained in the ion-exchange mode, although POE chains possess no ion exchange sites. The retention behavior suggested that eluent cations could be trapped among multiple POE chains via ion-dipole interaction, and that the trapped cations worked as the anion-exchange sites. Anions could be separated using crown ether, i.e., cyclic POE, as the eluent additive with a hydrophobic stationary phase, where analyte anions were retained via electrostatic interaction with the eluent cation trapped on the crown ether.  相似文献   

7.
A vitamin U-bonded stationary phase was prepared and the retention behavior of inorganic anions was examined using ion chromatography. Inorganic anions were retained on the vitamin U-bonded stationary phase under acidic as well as neutral eluent conditions in the ion-exchange mode. The elution order of the examined anions under neutral eluent conditions was nearly the same as that observed in common ion exchange mode, while the elution order observed under acidic eluent conditions was completely different from that observed in common ion exchange mode. The retention of the analyte anions under the neutral eluent conditions was due to the sulfonium groups of the vitamin U, while protonated primary amino groups caused retention of the analyte anions with different selectivity under acidic conditions. The retention factor of the analyte anions increased with decreasing eluent concentration under both eluent conditions. The present system was applied to the determination of bromide and nitrate contained in seawater.  相似文献   

8.
Cationic polyelectrolyte of chitosan was used for the reversal of electroosmotic flow in capillary zone electrophoresis. The chitosan was dissolved in acetic acid solution, and stable electroosmotic flow was obtained at the chitosan concentrations between 50 and 300 microg/mL. Separation of inorganic anions was carried out using the dynamically coated capillary by capillary zone electrophoresis. Nine kinds of anions were separated and detected with the capillary. The electrophoretic mobility of the analyte anions decreased with increasing concentrations of chitosan in the migrating solution through ion-ion interaction, but the migration order of the analyte anions was not changed in the concentration range of the chitosan examined. The signal shape for the analyte anions was developed by using field-enhanced sample stacking with 10 mM sodium sulfate.  相似文献   

9.
A dicationic imidazolium ionic liquid modified silica stationary phase was prepared and evaluated by reversed‐phase/anion‐exchange mixed‐mode chromatography. Model compounds (polycyclic aromatic hydrocarbons and anilines) were separated well on the column by reversed‐phase chromatography; inorganic anions (bromate, bromide, nitrate, iodide, and thiocyanate), and organic anions (p‐aminobenzoic acid, p‐anilinesulfonic acid, sodium benzoate, pathalic acid, and salicylic acid) were also separated individually by anion‐exchange chromatography. Based on the multiple sites of the stationary phase, the column could separate 14 solutes containing the above series of analytes in one run. The dicationic imidazolium ionic liquid modified silica can interact with hydrophobic analytes by the hydrophobic C6 chain; it can enhance selectivity to aromatic compounds by imidazolium groups; and it also provided anion‐exchange and electrostatic interactions with ionic solutes. Compared with a monocationic ionic liquid functionalized stationary phase, the new stationary phase represented enhanced selectivity owing to more interaction sites.  相似文献   

10.
A new zwitterionic stationary phase based on silica bonded with 1-alkyl-3-(propyl-3-sulfonate) imidazolium was synthesized and characterized in this paper. The materials have been confirmed and evaluated by elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. Potassium and calcium were separated simultaneously with several common inorganic anions including an iodate, chloride, bromide, nitrate and iodide on the phase. The effects of the concentration, organic solvent and pH of the eluent on the separation of anions were studied. Operated in the anion-exchange mode, this new stationary phase shows considerable promise for the separation of anions. Bases, vitamins and three imidazolium ionic liquids with different alkyl chains are also separated successfully on this column. The stationary phase has multiple retention mechanisms, such as anion-exchange, electrostatic attraction and repulsion interactions, and hydrophobic interaction between the zwitterionic stationary phase and specimens.  相似文献   

11.
An ion chromatographic method for the rapid and direct determination of iodide in seawater is reported. Poly(ethylene glycol) (PEG) groups were chemically bonded onto silica gel or C30-bonded silica gel via diol groups. PEG-bonded C30 binary phases allowed determination of iodide in seawater samples without any interference. Effects of eluent composition on retention behavior of inorganic anions have been investigated. Both cation and anion of the eluent affected the retention of analyte anions. The retention time of anions increased with increasing eluent concentration. The detection limit for iodide obtained by injecting 0.2 microl of sample was 13 microg l(-1) (S/N=3) while the limit of quantitation was 43 microg l(-1) (S/N=10). The present method was successfully applied to the rapid and direct determination of iodide in seawater with long-term durability.  相似文献   

12.
Summary Microcolumn ion chromatography of inorganic anions has been studied using bovine serum albumin immobilized on silica gel as a stationary phase. Several mobile phase solutions were examined, involving sodium iodide, potassium hydrogen phthalate, 2,6-anthraquinone disulfonate (2,6-AQDS) and sodium salicylate. 2,6-AQDS achieved better separation of the analytes tested. Chloride, nitrate, iodide, thiocyanate and sulphate could be separated within 8 min. Detection limits were in the range of 0.9–2.9 M, corresponding to mass detection limits of 0.18–0.59 pmol. The system was applied to the determination of inorganic anions in environmental water and biological samples.  相似文献   

13.
New stationary phases for chromatographic separation of anions, obtained by loading liposomes made from dimyristolyphosphatidylcholine (DMPC) onto reversed-phase packed columns (C18 and C30) are reported. Mono- and divalent anions were used as model analyte ions and retention data for these species were obtained using the DMPC stationary phases and used to elucidate the separation mechanisms involved in this chromatographic system. The DMPC stationary phases can separate anions by either a solvation-dependent mechanism or an electrostatic ion-exchange mechanism, depending upon the relative magnitudes of the negative electrostatic potential (Psi(-)) of the phosphate moiety (P-) and the positive electrostatic potential (Psi(+)) of the quaternary ammonium groups (N+) on the headgroup of DMPC. If Psi(+) > Psi(-), such as in case where Psi(-) has been reduced either by binding of eluent cations (e.g., H+ or divalent cations) onto the P- group of DMPC or by steric screening when a C30 reversed-phase material was used to support the DMPC, then the overall electrostatic surface potential (and hence also the effective anion-exchange capacity) was generally large and the anions were separated on the basis of an electrostatic mechanism. However, if Psi(+) was similar to Psi(-), such as in the case of using a C18 reversed-phase support and monovalent cations as eluent cations, then the overall electrostatic surface potential and the effective anion-exchange capacity were very small and the analyte anions were separated on the basis of a solvation-dependent mechanism. The DMPC stationary phases were found to be suitable for the direct determination of iodide and thiocyanate in highly saline water samples, such as seawater samples.  相似文献   

14.
Ion-pair chromatography (IPC) almost universally relies upon ammonium-based ion-pairing agents (IPAs) for anion separations. This work compares tetrabutylammonium (TBA) with tetrabutylphosphonium (TBP) and tributylsulfonium (TBS). To best understand the retention behavior analytes used for characterization of the IPAs spanned the Hofmeister series; from kosmotropic monoanions (iodate, chloride, nitrite) and intermediate anions (nitrate, bromide) to chaotropic ions (perchlorate, thiocyanate, iodide). The studies demonstrate that tetrabutylphosphonium is the most chaotropic IPA, followed by tetrabutylammonium and finally tributylsulfonium is the least chaotropic. In the case of the chaotropic anions, the retention of perchlorate was least with tributylsulfonium, and greatest for tetrabutylphosphonium, with tetrabutylammonium being intermediate. The multivalent kosmotropic anions (sulfate, chromate, thiosulfate) demonstrated unique selectivity changes depending on the kosmotropic/chaotropic nature of the IPA. Demonstrating increases in retention with increasing IPA concentration only with tributylsulfonium, whereas the more chaotropic IPAs universally decreased the retention of the multivalent anions.  相似文献   

15.
A new type of zwitterionic surfactant, N-{2-[acetyl(3-sulfopropyl)amino]ethyl}-N,N-dimethyldodecanaminium hydroxide (ammonium sulfobetaine-1), with a greater distance between the two charged groups, was used as the stationary phase for electrostatic ion chromatography (EIC) of polarizable anions (e.g., thiocyanate, iodide and nitrate) in saline water samples. The targeted species (polarizable anions) were baseline separated using this type of zwitterionic surfactant as the stationary phase, but the highly polarizable species (iodide and thiocyanate) were eluted faster (compared with the results obtained using N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, C12N3S, with a shorter distance between the two charged groups, as the stationary phase). In other words, the extent of binding of the highly polarizable anion (iodide and thiocyanate) was found to be smaller when using ammonium sulfobetaine-1 as the stationary phase. This provides a rapid but effective method for the analysis of highly polarizable anions in saline water samples. The results for the successful detection of iodide in seawater demonstrates the usefulness of this new type of zwitterionic surfactants for EIC.  相似文献   

16.
We developed a n-hexane/surfactant-containing water solvent system in counter-current chromatography (CCC) in order to separate hydrophobic compounds. By using the upper phase as the mobile phase, we have separated steroid samples. Retention times of steroids progesterone and delta4-androstene-3,17-dione increased slightly by increasing the concentration below the critical micellar concentration (CMC) of surfactant sodium 1-heptanesulfonate. However, the retention times increased drastically while the SHS concentrations were above the CMC. The partition of these two steroids in the two phases was significantly dependent on the interaction with micelles. Aromatic hydrocarbons were not retained by the lower phase no matter what the surfactant concentrations were. Their hydrophobic interaction with n-hexane greatly exceeded that with the micellar solution. The retention times of esters, however, were only slightly affected by the surfactant addition even above the CMC. The weaker interaction between esters and the micellar solution was probably due to their higher polarity. The micellar solvent systems provide an alternative way for hydrophobic sample separations in CCC, but the performance is limited.  相似文献   

17.
Reversed phase liquid chromatography of alkyl-imidazolium ionic liquids   总被引:2,自引:0,他引:2  
Eleven 1-alkyl-3-methyl imidazolium ionic liquid (IL) salts were analyzed in reversed phase mode with a Kromasil C18 column. The mobile phases were water-rich acetonitrile solutions (water content > or =70%, v/v) without any added salts. It is shown that it is possible to separate different ILs sharing the same cation and differing by the anion when salt-free mobile phases are used. When a buffer, acetate or phosphate salt, or any salt, such as sodium chloride or sodium tetrafluorobarate, is added to the mobile phase, the ILs differing only by their anions cannot be separated. ILs with different alkyl chains in the imidazolium cation are separated by mobile phases with or without added salts following a hydrophobic interaction behavior: log k is proportional to nC, the carbon number of the alkyl chain. Important differences in ion/stationary phase interactions are observed depending on the ionic content of the mobile phase. With salt-free mobile phases, the IL/C18 stationary phase interactions correspond to concave isotherms associated with fronting peaks for all ILs. With mobile phase containing 0.01 M of salt, tailing IL peaks correspond to convex adsorption isotherms. Also, the IL retention factor depends on the concentration and nature of the added salt. Hexafluorophosphate chaotropic anions can adsorb on the Kromasil C18 surface dramatically increasing the imidazolium cation retention factors.  相似文献   

18.
Seven theoretical retention models, namely the linear solvent strength model (using the dominant equilibrium approach and competing ion effective charge approach), the dual eluent species model, the Kuwamoto model, the extended dual eluent species model, the multiple species eluent/analyte model and the empirical end-points model, were used to describe the retention behaviour of anions in suppressed ion chromatography (IC). An extensive set of experimental retention data was gathered for 24 anions (fluoride, formate, bromate, chloride, hexanesulfonate, bromide, chlorate, nitrate, iodide, thiocyanate, perchlorate, sulfite, succinate, sulfate, tartrate, selenate, oxalate, tungstate, phthalate, molybdate, chromate, thiosulfate and phosphate) on a Dionex AS4A-SC column using carbonate eluents of varying concentration and HCO3:CO32− ratios. Statistical comparison of the predicted and experimentally obtained retention factors showed that the performance of the theoretical models improved with the complexity of the model. However the empirical model (in which a linear relationship is assumed between the logarithm of retention factor and the logarithm of eluent strength, but the slope is determined empirically) gave the most consistent performance across the widest range of anions. The empirical end-points model was also shown to be the most satisfactory model due to its low knowledge requirements and easy solution. Compared with non-suppressed IC (see Part I), the retention behaviour in suppressed IC was found to be easier to model by all retention models.  相似文献   

19.
Methyl-capped poly(ethylene oxide) moieties were chemically bonded to silica gel using an amine-reactive modification reagent and evaluated as the stationary phase for ion chromatography. In this work, primary amino groups of an aminopropylsilica packing material were reacted with methyl-PEO12-NHS ester (succinimidyl-{[N-methyl]-dodecaethyleneglycol} ester) in phosphate buffer (pH 7.0) at room temperature. The prepared poly(ethylene oxide)-bonded stationary was evaluated for the separation of inorganic anions, and the retention behavior of inorganic anions on the prepared stationary phase was examined. The elution order of the investigated anions was the same as that observed in common ion chromatography. Both cations and anions of the eluent affected the retention of the analyte anions. Ion exchange was involved for the retention of analyte anions, although the present stationary phase does not possess any discrete ion-exchange sites. The stationary phase was applied to the separation of trace anions contained in tap water and a rock salt.  相似文献   

20.
A nonlinear function retention model for anion chromatography is developed, which is able to predict the retention behavior of polyvalent weak acid anions using sodium hydroxide as eluent. The relationship between the retention factors of phosphate and resorcinol and eluent concentration was studied with sodium hydroxide as the eluent. Both retention factors of the analyte anions first increase then decrease with the increase of sodium hydroxide concentration. The estimated values agree with the measured values with correlation coefficients for phosphate and resorcinol of 0.9920 and 0.9916, respectively, which shows the nonlinear function model is a useful addition to the theory of anion chromatography. The model is able to optimize the separation of polyvalent weak acid anions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号