首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The basis of the complementary use of electrochemical capacitors (so-called supercapacitors) in hybrid electric power generation by rechargeable batteries and fuel cells is explored. Electrochemical capacitors are of two types: one where the interfacial double-layer capacitance of high specific area carbon materials is the basis of electric charge storage (as ions and electrons); and the other where pseudocapacitance, associated with electrosorption and surface redox processes at high-area electrode materials, e.g. RuO2, or at conducting polymers, provides the basis of charge storage. The former, double-layer, type of capacitance stores charge non-faradaically while the latter type, pseudocapacitance, stores charge indirectly through faradaic chemical processes but its electrical behaviour is like that of a capacitor. Two types of hybrid battery/capacitor system are recognized: one based on combination of an electrochemical capacitor cell with a rechargeable battery or a fuel cell in a load-leveling function, e.g. in an electric vehicle power train; and the other based on combination of a faradaic battery-type electrode coupled internally with a capacitative electrode in a two-electrode hybrid module (termed an asymmetric capacitor). Optimization of operation of such systems in terms of balancing of active masses, of power and charge densities, and choice of maximum but limited states-of-discharge, is treated.  相似文献   

2.
新型非对称电化学电容器的电极匹配研究   总被引:5,自引:1,他引:4  
苏岳锋  吴锋 《电化学》2004,10(2):190-196
活性炭负极容量的有效利用率是导致双电层电化学电容器和C/Ni(OH)2非对称电化学电容器容量性质差异的主要因素,并可将其作为非对称电化学电容器容量设计和测算的依据;本文引入Ni(OH)2正极有效活性物质概念,以正极有效活性物质的量匹配负极的设计容量,从而优化正、负极的容量匹配,改善非对称电化学电容器的容量和大电流性能.  相似文献   

3.
苏岳锋  吴锋 《化学通报》2004,67(8):616-620
在C/KOH/Ni(OH)2型非对称电化学电容体系中,Ni(OH)2电极需具有快速发生电化学反应的能力与活性炭负极匹配。本文通过增加微集流体的掺杂比例.对活性物质进行球磨处理、固相掺杂碳纳米管等方法对正极进行改性研究。实验发现,增加正极微集流体的掺杂比例.可明显改善非对称电容大电流条件下的容量和循环性能;对正极活性物质进行球磨处理,有利于电极活性物质的转变.加快非对称电容的活化速度;在正极固相掺杂一定比例的碳纳米管可提高非对称电容的充放电效率和容量性质。  相似文献   

4.
In an internal hybrid capacitor, at least one electrode displays battery-like charge/discharge and the other electrode stores charge reversibly at the electric double-layer (EDL). Recently, a plethora of hybrid cells in aqueous electrolytes have been proposed by coupling an EDL electrode with a battery electrode, the latter made from a variety of redox-active/redox-mediator species either dissolved in the electrolyte or adsorbed/immobilized in nanoporous electrodes. This review presents current opinions, discusses challenges, and supplies recommendation about the hybrid cells with aqueous electrolytes and carbon electrodes.  相似文献   

5.
A novel asymmetric hybrid capacitor using LiMn2O4 and manganese oxide (MnO2)/carbon nanotube (CNT) nanocomposite as the positive and negative electrode materials, respectively, and 1 M LiClO4 in propylene carbonate (PC) as the electrolyte has been developed. To the best of our knowledge, this is the first reported assembly of an asymmetric hybrid capacitor with metal oxides for both electrode materials, and, especially, with MnO2 as the negative electrode material. The discharge profile of the asymmetric hybrid capacitor shows a typical capacitive behavior with a linear slope. The asymmetric hybrid capacitor was able to deliver a specific energy as high as 56 Wh/kg at a specific power of 300 W/kg, based on the total weight of LiMn2O4 and MnO2/CNT nanocomposite in both electrodes. These results clearly demonstrated a superior performance of this new type of capacitor with a higher specific energy compared to other types of asymmetric hybrid capacitors.  相似文献   

6.
以工业制糖的副产物糖蜜为新型碳源,替代传统多孔碳生产原料,制备出性能优异的多孔碳球超级电容器电极材料;探索了制备方法,优化了反应条件.利用全功能表面吸附仪、扫描电子显微镜及电化学方法对材料的结构、形貌和电化学性能进行了表征.结果表明,制得的多孔碳球比表面积高达2547 m~2/g,且展现出优异的双电层电容性(170.5 F/g).本研究可解决制糖企业对糖蜜无法大规模利用的问题,并为多孔碳的制备寻求新方法.  相似文献   

7.
Electrochemical Capacitors   总被引:4,自引:0,他引:4  
The current literature sources on the electrochemical capacitors, which are divided into the film (dielectric), electrolytic, and supercapacitors, are reviewed. The supercapacitors are in turn subdivided into the double-layer capacitors, which use the EDL recharge on a highly-developed interfacial surface of electrodes; pseudocapacitors, where the charge is stored in a faradaic pseudocapacitance of sufficiently reversible redox reactions and the EDL capacitance; and hybrid capacitors, which employ a variety of electrodes. A macrokinetic theory of operation of double-layer capacitors is considered. Effect of various factors on the properties of electrodes utilized in supercapacitors is analyzed. A novel type of hybrid capacitor, which has a negative electrode of activated carbon cloth and a PbSO4/PbO2 positive electrode, is proposed. A theory of capillary equilibrium in hermetically sealed electrochemical capacitors is considered. Specific features of the application of voltammetric and impedance methods to studying electrochemical processes in supercapacitors are revealed. Characteristics of electrochemical capacitors and batteries are compared.  相似文献   

8.
Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model, which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbon materials and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (<2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (>50 nm) at which pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, which show the significant effects of pore curvature on the supercapacitor properties of nanoporous carbon materials. It is shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials, including activated carbon materials, template carbon materials, and novel carbide-derived carbon materials, and with diverse electrolytes, including organic electrolytes, such as tetraethylammonium tetrafluoroborate (TEABF(4)) and tetraethylammonium methylsulfonate (TEAMS) in acetonitrile, aqueous H(2)SO(4) and KOH electrolytes, and even an ionic liquid electrolyte, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size It may lend support for the systematic optimization of the properties of carbon supercapacitors through experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.  相似文献   

9.
聚苯胺/活性碳复合型超电容器的电化学特性   总被引:7,自引:0,他引:7  
电化学电容器作为一种新型储能器件具有广泛的应用.采用(NH4)2S2O8化学氧化聚合苯胺法制备了聚苯胺电极材料,采用化学物理二次催化活化法制备了高比表面积活性碳材料.并用循环伏安、恒流充放电以及交流阻抗等方法对上述电极材料的电化学特性进行了研究.实验结果表明,所制备的聚苯胺电极材料具有高于420 F•g-1的法拉第赝电容和良好的电化学特性,所制备的活性碳电极材料则具有160 F•g-1的双电层电容量.分别采用聚苯胺作为正极,活性碳作为负极,38%硫酸作为电解液制备了复合型电化学电容器.复合型电容器工作电压达到1.4 V, 电容器单体比电容达到57 F•g-1,最大比能量和最大真实比功率分别达到15.5 W•h•kg-1和2.4 W•g-1, 峰值比功率达到20.4 W•g-1,电容器循环工作寿命超过500次. 与活性碳双电层电容器相比,复合型电容器还具有较低的自放电率.  相似文献   

10.
新能源战略体系的建设和电子技术的飞速发展对储能器件的性能提出了更高的要求,锂离子电容器是将锂离子电池和双电层电容器“内部交叉”的新型混合储能器件,兼具高能量密度和高功率密度,近年来引起了国内外的广泛关注.本文阐述了锂离子电容器的工作原理和国内外产业发展现状,总结了碳负极的预赋锂技术、电极材料与体系匹配性研究等关键技术前沿的研究成果,并提出了后续产业化研究中所需要解决的实际问题.  相似文献   

11.
电化学混合电容器用新型聚吡咯/介孔碳纳米复合电极   总被引:1,自引:0,他引:1  
采用介孔碳CMK-3作为载体,通过化学原位聚合的方法制备出一种新型的聚吡咯/介孔碳(PPy-CMK-3)纳米复合材料.将该纳米复合材料作为正极,配以介孔碳CMK-3为负极和1.0mol·L-1NaNO3中性电解液,组装成为电化学混合电容器.电化学测试表明:在5.0mA·cm-2电流密度和1.4V充放电电位条件下,其放电比容量达57F·g-1,电容器功率密度为2.5×102W·kg-1,能量密度达17Wh·kg-1.当电流密度从5.0mA·cm-2增加至50mA·cm-2时,电容器的容量保持率在80%以上,显示高倍率充放电特性优异.此外,聚吡咯-介孔碳/介孔碳电化学混合电容器易活化,并具有优异的充放电效率和良好的循环稳定性能.  相似文献   

12.
以豌豆荚为碳源、ZnCl2或KOH为活化剂制备了活性炭, 并用作双电层电容器的电极材料. 采用比表面及孔隙度分析仪表征了豌豆荚基活性炭的孔结构. 通过KOH或ZnCl2活化后, 活性炭比表面积从1.69 m2·g-1增大到2237或621 m2·g-1. 采用循环伏安法和恒流充放电测试技术表征了豌豆荚基活性炭的电化学特性. 结果表明: 在6 mol·L-1 KOH溶液中经KOH活化处理的活性炭的质量比电容高达297.5 F·g-1, 并具有良好的充放电稳定性, 在5 A·g-1的高电流密度下循环充放电500次后, 质量比电容仅衰减8.6%.  相似文献   

13.
新型活性炭材料在双电层电容器中的应用研究   总被引:6,自引:1,他引:5  
以椰壳为原料,利用特定的物理 化学方法在一定条件下制得双电层电容器活性炭电极材料.实验表明,该活性炭经压制成型后制作的双电层电容器,具有大的比电容,文中同时研究了酸处理、二次活化以及电极冷压成型方法对电极性能的影响.  相似文献   

14.
Lithium-ion hybrid supercapacitors(Li-HSCs) and dual-ion batteries(DIBs) are two types of energy storage devices that have attracted extensive research interest in recent years. Li-HSCs and DIBs have similarities in device structure, tendency for ion migration, and energy storage mechanisms at the negative electrode. However, these devices have differences in energy storage mechanisms and working potentials at the positive electrode. Here, we first realize the integration of a Li-HSC and a DIB to form a dual-ion hybrid supercapacitor(DIHSC), by employing mesocarbon microbead(MCMB)-based porous graphitic carbon(PGC) with a partially graphitized structure and porous structure as a positive electrode material. The MCMB-PGC-based DIHSC exhibits a novel dual-ion battery-capacitor hybrid mechanism: it exhibits excellent electronic double-layer capacitor(EDLC) behavior like a Li-HSC in the low-middle wide potential range and anion intercalation/de-intercalation behavior like a DIB in the high-potential range. Two types of mechanisms are observed in the electrochemical characterization process, and the energy density of the new DIHSC is significantly increased.  相似文献   

15.
本文针对近五年来光功能稀土/无机/有机聚合物杂化材料的最新进展进行了评述,其重点着眼于高分子化合物作为构筑基元的发光稀土杂化材料体系的化学键组装.内容主要涉及稀土有机高分子杂化材料、配位键构筑的稀土/无机/有机高分子杂化材料、共价键构筑的稀土/无机/有机高分子杂化材料、自由基聚合构筑的稀土/无机/有机高分子杂化材料几个重要方面.主要结合我们自己的近期研究工作,通过系统总结来展现该领域的研究现状并提出未来展望.  相似文献   

16.
Procedure for obtaining new hybrid sorbents based on carbon fibers and chitosan-carbon materials modified with molybdenum, which determines the affinity of the sorbents for arsenate ions, is described. The surface morphology was examined and a qualitative chemical analysis of the surface of the composite sorbents was made by the method of scanning electron microscopy–energy-dispersive analysis. Sorption isotherms were obtained for unmodified materials, carbon fibers and chitosan-carbon materials, and hybrid sorbents in twicedistilled and tap water at low As(V) concentrations.  相似文献   

17.
Organically modified cubic polyhedral oligomeric silsesquioxanes (POSS) have attracted increasing attention in the design of novel functional hybrid materials for applications such as porous materials, liquid crystals, semiconductors, high‐temperature lubricants, fuel cells, and lithium batteries. The nanosized POSS moiety can be conveniently modified on the periphery with a variety of functional groups to lead to hybrid materials with desired functions. In addition, suitable mono‐functionalized POSS derivatives can be incorporated into polymers as side chains via various synthetic strategies to offer a wide class of functional polymeric materials with tunable physical properties for targeted applications. In this Focus Review, we aim to summarize the recent developments on the chemistry and applications of POSS‐based molecules and polymers. Moreover, the properties as well as assembly behavior of the POSS‐based functional hybrid materials will be reviewed, and the relationship of the performance of the hybrid materials with the intrinsic nature of the POSS unit will be addressed.  相似文献   

18.
Adsorption and subsequent polymerization of nickel(II) complexes with Schiff bases were studied in a porous carbon material used to manufacture electric double-layer capacitors (supercapacitors). The optimal modification conditions of the carbon material with polymeric complexes to obtain the maximum effect as regards the accumulation of electric energy in the supercapacitor were determined and substantiated. An effective and cost-efficient technique for modification of supercapacitor electrodes with electrically active polymers was suggested.  相似文献   

19.
The performance of a newly designed, polyaniline activated carbon, hybrid electrochemical capacitor was evaluated. The polyaniline was prepared by the chemical oxidation/polymerization process. The capacitor was assembled by using polyaniline as a positive electrode and an activated carbon as a negative electrode respectively. From a cyclic voltammograms test, a specific capacitance of 420 F/g was obtained for polyaniline electrode. The cycle life of the cell is proved to be more than 1000 times by the Galvanostatic charge and discharge test. Values for the specific energy and real specific power of 15.5 Wh/kg and 2.8 W/g, respectively, are demonstrated for a cell voltage between 0.0 and 1.4 V. The max specific power for the hybrid capacitor amounts to 20.4 W/g.  相似文献   

20.
In this work, stabilized Al-substituted α-Ni(OH)2 materials were successfully synthesized by a chemical coprecipitation method. The experimental results showed that the 7.5% Al-substituted α-Ni(OH)2 materials exhibited high specific capacitance (2.08?×?103 F/g) and excellent rate capability due to the high stability of Al-substituted α-Ni(OH)2 structures in alkaline media, suggesting its potential application in electrode material for supercapacitors. To enhance energy density, an asymmetric type pseudo/electric double-layer capacitor was considered where α-Ni(OH)2 materials and activated carbon act as the positive and negative electrodes, respectively. Values for the maximum specific capacitance of 127 F/g and specific energy of 42 W·h/kg were demonstrated for a cell voltage between 0.4 and 1.6 V. By using the α-Ni(OH)2 electrode, the asymmetric supercapacitor exhibited high energy density and stable power characteristics. The hybrid supercapacitor also exhibited a good electrochemical stability with 82% of the initial capacitance over consecutive 1,000 cycle numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号