首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of measurements for the distribution of spectral density for underwater noise in the shelf zone of the Pacific Ocean 21 km from Shikotan Island at the depth of 130 m within the frequency range 1.9–11000 Hz at the wind speed 0–40 m/s are given. Measurements were conducted within the bands of 1/3- and 1/2-octave filters over six months. In the case of a realization length of 33 min and smaller, the distribution of the instant pressure values for underwater noise can be considered normal. The distribution of deep slow variations for the intensity of underwater noise at all frequencies differed from the normal one. The values for the asymmetry parameter and the coefficient of excess are given for the variation distribution of spectral density for underwater noise.  相似文献   

2.
Results of field studies of underwater dynamic noise energy flux directivity at two wind speeds, 6 m/s and 12 m/s, in the 400 Hz to 700 Hz frequency band in the deep open ocean are presented. The measurements were made by a freely drifting telemetric combined system at 500 m depth. Statistical characteristics of the horizontal and vertical dynamic noise energy flux directivity are considered as functions of wind speed and direction. Correlation between the horizontal dynamic noise energy flux direction and that of the wind was determined; a mechanism of the horizontal dynamic noise energy flux generation is related to the initial noise field scattering on ocean surface waves.  相似文献   

3.
S. Ramji  G. Latha 《Applied Acoustics》2009,70(8):1111-1115
In this work, estimation of ambient noise spectrum influenced by wind speed and wave height carried out for the frequency range of 500 Hz to 5 kHz using Feed forward Neural Network (FNN) is presented. Ocean ambient noise measurements were made in the shallow waters of Bay of Bengal using a portable data acquisition system with a high sensitivity hydrophone at a depth of 5 m from the surface.100 sets of data covering a rage of wind speeds from 2.5 m/s to 8.5 m/s with approximately 15 sets of data falling within 1 m/s over the range of wind speed were used for training the FNN. The parameter wave height which contributes to the noise producing mechanism is also used for training along with wind speed. The results revealed that the proposed method is useful in the estimation and interpolation of underwater noise spectrum level and hence in simulation for the considered frequency range. These were confirmed by calculating the Mean Squared Error (MSE) between the experimental data and the simulation. As the measurements of the underwater ambient noise level are very difficult in remote oceanic regions, where conditions are often inhospitable, these studies seem to be relevant.  相似文献   

4.
Estimates and standard deviations of the azimuth and elevation angles are presented for the underwater dynamic noise energy flux vector in the deep open ocean in the frequency band from 400 to 700 Hz at wind speeds of 6 and 12 m/s. The measurements are performed by a freely drifting combined measuring system at a depth of 500 m. The mean horizontal and vertical angles of the energy flux vector and their standard deviations are estimated using different averaging times. For the averaging time, a limiting value of 60 s is obtained. The presence of a relation between the direction of near-surface wind and the propagation direction of the horizontal dynamic noise energy flux is revealed. It is suggested that the mechanism responsible for the generation of the horizontal mean dynamic noise energy flux is related to the scattering of the initial noise field by the rough ocean surface.  相似文献   

5.
Experimental data on long-range propagation of explosion-generated signals in a well-developed underwater sound channel are analyzed. In the experiments, the wind speed reached 10–11 m/s and the sea state was Beaufort 4–6. At distances of 80–120 km from the source and at two different reception depths, a prereverberation is observed, that is, the advancing of a part of the bistatic surface reverberation with respect to the direct signal. The conditions for the prereverberation to arise are discussed for different distances from the source. On the basis of data processing, the increase rate of the prereverberation signal, its level relative to the direct signal, and frequency dependence are estimated.  相似文献   

6.
Underwater and airborne sounds and ice-borne vibrations were recorded from sea-ice near an artificial gravel island during its initial construction in the Beaufort Sea near Prudhoe Bay, Alaska. Such measurements are needed for characterizing the properties of island construction sounds to assess their possible impacts on wildlife. Recordings were made in February-May 2000 when BP Exploration (Alaska) began constructing Northstar Island about 5 km offshore, at 12 m depth. Activities recorded included ice augering, pumping sea water to flood the ice and build an ice road, a bulldozer plowing snow, a Ditchwitch cutting ice, trucks hauling gravel over an ice road to the island site, a backhoe trenching the sea bottom for a pipeline, and both vibratory and impact sheet pile driving. For all but one sound source (underwater measurements of pumping) the strongest one-third octave band was under 300 Hz. Vibratory and impact pile driving created the strongest sounds. Received levels of sound and vibration, as measured in the strongest one-third octave band for different construction activities, reached median background levels <7.5 km away for underwater sounds, <3 km away for airborne sounds, and <10 km away for in-ice vibrations.  相似文献   

7.
The objective of this study was to determine the levels, characteristics, and range dependence of underwater and in-air sounds produced during the open-water seasons of 2000-2003 by the Northstar oil development, located in nearshore waters of the Alaskan Beaufort Sea. Specifically, sounds originating at the island itself (from construction, drilling, and oil production activities) were compared with sounds produced by vessels performing island support. Sounds were obtained with boat-based recordings (at distances up to 37 km from Northstar), a cabled hydrophone (distance approximately 450 m), and with autonomous seafloor recorders (distance approximately 22 km). Vessels (crew boat, tugs, self-propelled barges) were the main contributors to the underwater sound field and were often detectable underwater as much as approximately 30 km offshore. Without vessels, broadband island sounds reached background values at 2-4 km. Island sound levels showed more variation (lower min, higher max) during construction than during drilling and production. In-air broadband measurements were not affected by the presence of vessels and reached background values 1-4 km from Northstar. However, one airborne tone (81 Hz) believed to originate at Northstar was still detectable in the spectrum 37 km away.  相似文献   

8.
Recordings of sounds underwater and in air, and of iceborne vibrations, were obtained at Northstar Island, an artificial gravel island in the Beaufort Sea near Prudhoe Bay (Alaska). The aim was to document the levels, characteristics, and range dependence of sounds and vibrations produced by drilling and oil production during the winter, when the island was surrounded by shore-fast ice. Drilling produced the highest underwater broadband (10-10,000 Hz) levels (maximum= 124 dB re: 1 microPa at 1 km), and mainly affected 700-1400 Hz frequencies. In contrast, drilling did not increase broadband levels in air or ice relative to levels during other island activities. Production did not increase broadband levels for any of the sensors. In all media, broadband levels decreased by approximately 20 dB/tenfold change in distance. Background levels underwater were reached by 9.4 km during drilling and 3-4 km without. In the air and ice, background levels were reached 5-10 km and 2-10 km from Northstar, respectively, depending on the wind but irrespective of drilling. A comparison of the recorded sounds with harbor and ringed seal audiograms showed that Northstar sounds were probably audible to seals, at least intermittently, out to approximately 1.5 km in water and approximately 5 km in air.  相似文献   

9.
Summary Variations in wind velocity and direction due to the mounting structure are studied using Gill anemometers mounted on 1.8 m long arms of a 232 m high tower. The tower ?shadowing? effect for the observed range, from 0 to 20 m/s, is in linear correlation with the velocity. The polar diagrams of the variations in wind speed and direction are presented as a function of the wind's direction. The horizontal component decreases by 15% when the anemometer is on the windward side of the tower, and by a maximum of 80% on the lee side. In the latter case the decrease is highly sensitive to wind direction. Variations in direction do not exceed 15 degrees. Paper presented at the IV Congresso del Gruppo Nazionale per la Fisica dell'Atmosfera e dell'Oceano, June 22–24, 1987, Rome.  相似文献   

10.
Results of measuring normalized autocorrelation functions and frequency correlation functions of slow random variations in the ambient noise levels are presented. The measurements were carried out in the shelf zone of the Pacific Ocean, near Shikotan Island, at a depth of 130 m in the frequency range from 0.9 Hz to 11 kHz. The noise level’s variations were fairly synchronous in a wide frequency range. Their autocorrelation interval varied from 11 to 42 h for different frequencies, and the frequency correlation was no smaller than 0.77 within 2 decades. The integral autocorrelation interval of the wind speed’s variations was 14.1 h.  相似文献   

11.
The vocal repertoire of Pacific walruses includes underwater sound pulses referred to as knocks and bell-like calls. An extended acoustic monitoring program was performed in summer 2007 over a large region of the eastern Chukchi Sea using autonomous seabed-mounted acoustic recorders. Walrus knocks were identified in many of the recordings and most of these sounds included multiple bottom and surface reflected signals. This paper investigates the use of a localization technique based on relative multipath arrival times (RMATs) for potential behavior studies. First, knocks are detected using a semi-automated kurtosis-based algorithm. Then RMATs are matched to values predicted by a ray-tracing model. Walrus tracks with vertical and horizontal movements were obtained. The tracks included repeated dives between 4.0 m and 15.5 m depth and a deep dive to the sea bottom (53 m). Depths at which bell-like sounds are produced, average knock production rate and source levels estimates of the knocks were determined. Bell sounds were produced at all depths throughout the dives. Average knock production rates varied from 59 to 75 knocks/min. Average source level of the knocks was estimated to 177.6 ± 7.5 dB re 1 μPa peak @ 1 m.  相似文献   

12.
The results are presented of an experimental study of spatial and frequency correlation of amplitude fluctuations of hydroacoustic signals on two paths of the Black Sea under conditions of a thermal underwater sound channel and tonal-continuous emission at frequencies of 4 and 1.5 kHz. The emitters were located in the coastal wedge on the bottom slope at depths of 35 and 60 m; a receiver system was submerged to a depth of 50–60 m off the side of a ship drifting at various distances in the open sea. Data are presented on the spatial (horizontal and vertical) and frequency intervals of fluctuation correlation on the first path extending 100 km at an emission frequency of 4 kHz under conditions of dominant fast fluctuations, as well as on the second path extending 300 km at an omission frequency of 1.5 kHz under conditions of dominant slow fluctuations. The results of experiments are used to estimate the efficiency of space-diversity and frequency-diversity reception of acoustic signals in application to information transmission over a hydroacoustic channel.  相似文献   

13.
The distance at which harbor porpoises can hear underwater detonation sounds is unknown, but depends, among other factors, on the hearing threshold of the species for impulsive sounds. Therefore, the underwater hearing threshold of a young harbor porpoise for an impulsive sound, designed to mimic a detonation pulse, was quantified by using a psychophysical technique. The synthetic exponential pulse with a 5?ms time constant was produced and transmitted by an underwater projector in a pool. The resulting underwater sound, though modified by the response of the projection system and by the pool, exhibited the characteristic features of detonation sounds: A zero to peak sound pressure level of at least 30?dB (re 1?s(-1)) higher than the sound exposure level, and a short duration (34?ms). The animal's 50% detection threshold for this impulsive sound occurred at a received unweighted broadband sound exposure level of 60?dB re 1?μPa(2)s. It is shown that the porpoise's audiogram for short-duration tonal signals [Kastelein et al., J. Acoust. Soc. Am. 128, 3211-3222 (2010)] can be used to estimate its hearing threshold for impulsive sounds.  相似文献   

14.
It is difficult to attribute underwater animal sounds to the individuals producing them. This paper presents a system developed to solve this problem for dolphins by linking acoustic locations of the sounds of captive bottlenose dolphins with an overhead video image. A time-delay beamforming algorithm localized dolphin sounds obtained from an array of hydrophones dispersed around a lagoon. The localized positions of vocalizing dolphins were projected onto video images. The performance of the system was measured for artificial calibration signals as well as for dolphin sounds. The performance of the system for calibration signals was analyzed in terms of acoustic localization error, video projection error, and combined acoustic localization and video error. The 95% confidence bounds for these were 1.5, 2.1, and 2.1 m, respectively. Performance of the system was analyzed for three types of dolphin sounds: echolocation clicks, whistles, and burst-pulsed sounds. The mean errors for these were 0.8, 1.3, and 1.3 m, respectively. The 95% confidence bound for all vocalizations was 2.8 m, roughly the length of an adult bottlenose dolphin. This system represents a significant advance for studying the function of vocalizations of marine animals in relation to their context, as the sounds can be identified to the vocalizing dolphin and linked to its concurrent behavior.  相似文献   

15.
The design of a 50 Hz single longitudinal mode, diode-pumped and frequency-tripled Nd:YAG master oscillator power amplifier is described, and the first measurements of output parameters are presented. The laser oscillator is injection-seeded by a tuneable monolithic Nd:YAG ring laser and frequency stabilized by minimising the Q-switch build-up time. The laser system will be an integral part of an airborne instrument demonstrator for a first satellite based Doppler wind lidar to measure vertical profiles of one component of the atmospheric wind vector. This paper focuses on the investigation of the frequency jitter and the linewidth of the laser, which are measured on a pulse-to-pulse basis. For this purpose a compact, high accuracy beat frequency monitoring system has been developed at DLR. By operating the amplifier stage at half the repetition rate (50 Hz) of the oscillator, we could reduce the frequency stability from 10 MHz (rms) to 1.3 MHz (rms) (over a 14 s period). We have determined a mean linewidth of 15 MHz (FWHM) at 1064 nm. These measured laser parameters enable wind velocity measurements in the atmosphere (0–15 km) at an accuracy of 1 to 2 m/s. PACS 42.55.Xi; 42.60.Lh; 42.68.Wt  相似文献   

16.
A behavioral response paradigm was used to measure masked underwater hearing thresholds in two bottlenose dolphins and one beluga whale before and after exposure to impulsive underwater sounds with waveforms resembling distant signatures of underwater explosions. An array of piezoelectric transducers was used to generate impulsive sounds with waveforms approximating those predicted from 5 or 500 kg HBX-1 charges at ranges from 1.5 to 55.6 km. At the conclusion of the study, no temporary shifts in masked-hearing thresholds (MTTSs), defined as a 6-dB or larger increase in threshold over pre-exposure levels, had been observed at the highest impulse level generated (500 kg at 1.7 km, peak pressure 70 kPa); however, disruptions of the animals' trained behaviors began to occur at exposures corresponding to 5 kg at 9.3 km and 5 kg at 1.5 km for the dolphins and 500 kg at 1.9 km for the beluga whale. These data are the first direct information regarding the effects of distant underwater explosion signatures on the hearing abilities of odontocetes.  相似文献   

17.
The role of surface active materials in the sea surface microlayer on the production of underwater noise by breaking waves is considered. Wave noise is assumed to be generated by bubbles formed within actively breaking whitecaps, driven into breathing mode oscillation at the moment of their formation by non-equilibrium, surface tension forces. Two significant effects associated with surface tension are identified-a reduction in low frequency noise (<1000 Hz) due to the re-fragmentation of actively radiating bubbles by fluid turbulence within the whitecap and a reduction in overall noise level due to a decrease in the excitation amplitude of bubbles associated with reduced surface tension. The impact of the latter effect on the accuracy of Weather Observations Through Ambient Noise estimates of wind speed is assessed and generally found to be less than ±1 m?s(-1) for wind speeds less than 10?m s(-1) and typical values of surfactant film pressure within sea slicks.  相似文献   

18.
Many underwater bioacoustical recording experiments (e.g., fish sound production during courtship or agonistic encounters) are usually conducted in a controlled laboratory environment of small-sized tanks. The effects of reverberation, resonance, and tank size on the characteristics of sound recorded inside small tanks have never been fully addressed, although these factors are known to influence the recordings. In this work, 5-cycle tone bursts of 1-kHz sound were used as a test signal to investigate the sound recorded in a 170-l rectangular glass tank at various depths and distances from a transducer. The dominant frequency, sound-pressure level, and power spectrum recorded in small tanks were significantly distorted compared to the original tone bursts. Due to resonance, the dominant frequency varied with water depth, and power spectrum level of the projected frequency decreased exponentially with increased distance between the hydrophone and the sound source; however, the resonant component was nearly uniform throughout the tank. Based on the empirical findings and theoretical calculation, a working protocol is presented that minimizes distortion in fish sound recordings in small tanks. To validate this approach, sounds produced by the croaking gourami (Trichopsis vittata) during staged agonistic encounters were recorded according to the proposed protocol in an 1800-l circular tank and in a 37-l rectangular tank to compare differences in acoustic characteristics associated with tank size and recording position. The findings underscore pitfalls associated with recording fish sounds in small tanks. Herein, an empirical solution to correct these distortions is provided.  相似文献   

19.
A mathematical expression of surface reflectivity based on Fresnel’s formula and Snell’s law was particularly developed for the rough sea surface, the variation of whose slope in response to the surface wind is determined to the isotropic Gaussian distribution. Subsequently, reflection of rough sea surface in band of 3–5 and 8–12 μm was calculated and extensively analyzed in terms of viewing angle and surface wind. The corresponding results are of great practical significance to reducing the interference to the infrared detection due to reflection of the radiation from sun and sky.  相似文献   

20.
We consider statistical characteristics of the solar radiation in the sea. Expressions for the first-, second-, and third-order statistical moments of the irradiation are obtained. For the skewness of the probability distribution of the underwater irradiance, the dependences on the depth, wind velocity, and optical parameters of water are studied. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 51, No. 9, pp. 731–741, September 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号