首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
This paper is concerned with windshear detection in connection with real-time wind identification (Ref. 1). It presents a comparative evaluation of two techniques, one based on the shear/downdraft factor and one based on the wind difference index. The comparison is done with reference to a particular microburst, that which caused the 1985 crash of Flight Delta 191 at Dallas-Fort Worth International Airport.The shear/downdraft factor has the merit of combining the effects of the shear and the downdraft into a single entity. However, its effectiveness is hampered by the fact that, in a real situation, the windshear is accompanied by free-stream turbulence, which tends to blur the resulting signal. In turn, this results in undesirable nuisance warnings if the magnitude of the shear factor due to free-stream turbulence is temporarily larger than that due to true windshear. Therefore, proper filtering is necessary prior to using the shear/downdraft factor in detection and guidance. One effective way for achieving this goal is to average the shear/downdraft factor over a specified time interval . The effect of on the average shear/downdraft factor is studied.  相似文献   

2.
This paper is concerned with optimal flight trajectories in the presence of windshear. The abort landing problem is considered with reference to flight in a vertical plane. It is assumed that, upon sensing that the airplane is in a windshear, the pilot increases the power setting at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant. Hence, the only control is the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.The performance index being minimized is the peak value of the altitude drop. The resulting optimization problem is a minimax problem or Chebyshev problem of optimal control, which can be converted into a Bolza problem through suitable transformations. The Bolza problem is then solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. Numerical results are obtained for several combinations of windshear intensities, initial altitudes, and power setting rates.For strong-to-severe windshears, the following conclusions are reached: (i) the optimal trajectory includes three branches: a descending flight branch, followed by a nearly horizontal flight branch, followed by an ascending flight branch after the aircraft has passed through the shear region; (ii) along an optimal trajectory, the point of minimum velocity is reached at about the time when the shear ends; (iii) the peak altitude drop depends on the windshear intensity, the initial altitude, and the power setting rate; it increases as the windshear intensity increases and the initial altitude increases; and it decreases as the power setting rate increases; (iv) the peak altitude drop of the optimal abort landing trajectory is less than the peak altitude drop of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory; (v) the survival capability of the optimal abort landing trajectory in a severe windshear is superior to that of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory.Portions of this paper were presented at the IFAC 10th World Congress, Munich, Germany, July 27–31, 1987 (Paper No. IFAC-87-9221).This research was supported by NASA Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company (BCAC), and by Air Line Pilots Association (ALPA). Discussions with Dr. R. L. Bowles (NASA-LRC) and Mr. C. R. Higgins (BCAC) are acknowledged.  相似文献   

3.
This paper is concerned with optimal flight trajectories in the presence of windshear. The penetration landing problem is considered with reference to flight in a vertical plane, governed by either one control (the angle of attack, if the power setting is predetermined) or two controls (the angle of attack and the power setting). Inequality constraints are imposed on the angle of attack, the power setting, and their time derivatives.The performance index being minimized measures the deviation of the flight trajectory from a nominal trajectory. In turn, the nominal trajectory includes two parts: the approach part, in which the slope is constant; and the flare part, in which the slope is a linear function of the horizontal distance. In the optimization process, the time is free; the absolute path inclination at touchdown is specified; the touchdown velocity is subject to upper and lower bounds; and the touchdown distance is subject to upper and lower bounds.Three power setting schemes are investigated: (S1) maximum power setting; (S2) constant power setting; and (S3) control power setting. In Scheme (S1), it is assumed that, immediately after the windshear onset, the power setting is increased at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant; in this scheme, the only control is the angle of attack. In Scheme (S2), it is assumed that the power setting is held at a constant value, equal to the prewindshear value; in this scheme, the only control is the angle of attack. In Scheme (S3), the power setting is regarded as a control, just as the angle of attack.Under the above conditions, the optimal control problem is solved by means of the primal sequential gradient-restoration algorithm (PSGRA). Numerical results are obtained for several combinations of windshear intensities and initial altitudes. The main conclusions are given below with reference to strong-to-severe windshears.In Scheme (S1), the touchdown requirements can be satisfied for relatively low initial altitudes, while they cannot be satisfied for relatively high initial altitudes; the major inconvenient is excess of velocity at touchdown. In Scheme (S2), the touchdown requirements cannot be satisfied, regardless of the initial altitude; the major inconvenient is defect of horizontal distance at touchdown.In Scheme (S3), the touchdown requirements can be satisfied, and the optimal trajectories exhibit the following characteristics: (i) the angle of attack has an initial decrease, which is followed by a gradual, sustained increase; the largest value of the angle of attack is attained near the end of the shear; in the aftershear region, the angle of attack decreases gradually; (ii) initially, the power setting increases rapidly until maximum power setting is reached; then, maximum power setting is maintained in the shear region; in the aftershear region, the power setting decreases gradually; (iii) the relative velocity decreases in the shear region and increases in the aftershear region; the point of minimum velocity occurs at the end of the shear; and (iv) depending on the windshear intensity and the initial altitude, the deviations of the flight trajectory from the nominal trajectory can be considerable in the shear region; however, these deviations become small in the aftershear region, and the optimal flight trajectory recovers the nominal trajectory.A comparison is shown between the optimal trajectories of Scheme (S3) and the trajectories arising from alternative guidance schemes, such as fixed controls (fixed angle of attack, coupled with fixed power setting) and autoland (angle of attack controlled via path inclination signals, coupled with power setting controlled via velocity signals). The superiority of the optimal trajectories of Scheme (S3) is shown in terms of the ability to meet the path inclination, velocity, and distance requirements at touchdown. Therefore, it is felt that guidance schemes based on the properties of the optimal trajectories of Scheme (S3) should prove to be superior to alternative guidance schemes, such as the fixed control guidance scheme and the autoland guidance scheme.Portions of this paper were presented at the AIAA 26th Aerospace Sciences Meeting, Reno, Nevada, January 11–14, 1988 (Paper No. AIAA-88-0580).This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company (BCAC), and by Air Line Pilots Association (ALPA).The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, and to Dr. G. R. Hennig, Boeing Commercial Airplane Company, for helpful discussions.  相似文献   

4.
The landing of a passenger aircraft in the presence of windshear is a threat to aviation safety. The present paper is concerned with the abort landing of an aircraft in such a serious situation. Mathematically, the flight maneuver can be described by a minimax optimal control problem. By transforming this minimax problem into an optimal control problem of standard form, a state constraint has to be taken into account which is of order three. Moreover, two additional constraints, a first-order state constraint and a control variable constraint, are imposed upon the model. Since the only control variable appears linearly, the Hamiltonian is not regular. Thus, well-known existence theorems about the occurrence of boundary arcs and boundary points cannot be applied. Numerically, this optimal control problem is solved by means of the multiple shooting method in connection with an appropriate homotopy strategy. The solution obtained here satisfies all the sharp necessary conditions including those depending on the sign of certain multipliers. The trajectory consists of bang-bang and singular subarcs, as well as boundary subarcs induced by the two state constraints. The occurrence of boundary arcs is known to be impossible for regular Hamiltonians and odd-ordered state constraints if the order exceeds two. Additionally, a boundary point also occurs where the third-order state constraint is active. Such a situation is known to be the only possibility for odd-ordered state constraints to be active if the order exceeds two and if the Hamiltonian is regular. Because of the complexity of the optimal control, this single problem combines many of the features that make this kind of optimal control problems extremely hard to solve. Moreover, the problem contains nonsmooth data arising from the approximations of the aerodynamic forces and the distribution of the wind velocity components. Therefore, the paper can serve as some sort of user's guide to solve inequality constrained real-life optimal control problems by multiple shooting.An extended abstract of this paper was presented at the 8th IFAC Workshop on Control Applications of Nonlinear Programming and Optimization, Paris, France, 1989 (see Ref. 1).This paper is dedicated to Professor Hans J. Stetter on the occasion of his 60th birthday.  相似文献   

5.
In Part 1 of the paper (Ref. 2), we have shown that the necessary conditions for the optimal control problem of the abort landing of a passenger aircraft in the presence of windshear result in a multipoint boundary-value problem. This boundary-value problem is especially well suited for numerical treatment by the multiple shooting method. Since this method is basically a Newton iteration, initial guesses of all variables are needed and assumptions about the switching structure have to be made. These are big obstacles, but both can be overcome by a so-called homotopy strategy where the problem is imbedded into a one-parameter family of subproblems in such a way that (at least) the first problem is simple to solve. The solution data to the first problem may serve as an initial guess for the next problem, thus resulting in a whole chain of problems. This process is to be continued until the objective problem is reached.Techniques are presented here on how to handle the various changes of the switching structure during the homotopy run. The windshear problem, of great interest for safety in aviation, also serves as an excellent benchmark problem: Nearly all features that can arise in optimal control appear when solving this problem. For example, the candidate for an optimal trajectory of the minimax optimal control problem shows subarcs with both bang-bang and singular control functions, boundary arcs and touch points of two state constraints, one being of first order and the other being of third order, etc. Therefore, the results of this paper may also serve as some sort of user's guide for the solution of complicated real-life optimal control problems by multiple shooting.The candidate found for an optimal trajectory is discussed and compared with an approximate solution already known (Refs. 3–4). Besides the known necessary conditions, additional sharp necessary conditions based on sign conditions of certain multipliers are also checked. This is not possible when using direct methods.An extended abstract of this paper was presented at the 8th IFAC Workshop on Control Applications of Nonlinear Programming and Optimization, Paris, France, 1989 (see Ref. 1).This paper is dedicated to Professor Hans J. Stetter on the occasion of his 60th birthday.  相似文献   

6.
This paper is concerned with the optimal transition and the near-optimum guidance of an aircraft from quasi-steady flight to quasi-steady flight in a windshear. The abort landing problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is considered.It is assumed that a transition from descending flight to ascending flight is desired; that the initial state corresponds to quasi-steady flight with absolute path inclination of –3.0 deg; and that the final path inclination corresponds to quasi-steady steepest climb. Also, it is assumed that, as soon as the shear is detected, the power setting is increased at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant. Hence, the only control is the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.First, trajectory optimization is considered. The optimal transition problem is formulated as a Chebyshev problem of optimal control: the performance index being minimized is the peak value of the modulus of the difference between the instantaneous altitude and a reference value, assumed constant. By suitable transformations, the Chebyshev problem is converted into a Bolza problem. Then, the Bolza problem is solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems.Two types of optimal trajectories are studied, depending on the conditions desired at the final point. Type 1 is concerned with gamma recovery (recovery of the value of the relative path inclination corresponding to quasi-steady steepest climb). Type 2 is concerned with quasi-steady flight recovery (recovery of the values of the relative path inclination, the relative velocity, and the relative angle of attack corresponding to quasi-steady steepest climb). Both the Type 1 trajectory and the Type 2 trajectory include three branches: descending flight, nearly horizontal flight, and ascending flight. Also, for both the Type 1 trajectory and the Type 2 trajectory, descending flight takes place in the shear portion of the trajectory; horizontal flight takes place partly in the shear portion and partly in the aftershear portion of the trajectory; and ascending flight takes place in the aftershear portion of the trajectory. While the Type 1 trajectory and the Type 2 trajectory are nearly the same in the shear portion, they diverge to a considerable degree in the aftershear portion of the trajectory.Next, trajectory guidance is considered. Two guidance schemes are developed so as to achieve near-optimum transition from quasi-steady descending flight to quasi-steady ascending flight: acceleration guidance (based on the relative acceleration) and gamma guidance (based on the absolute path inclination).The guidance schemes for quasi-steady flight recovery in abort landing include two parts in sequence: shear guidance and aftershear guidance. The shear guidance is based on the result that the shear portion of the trajectory depends only mildly on the boundary conditions. Therefore, any of the guidance schemes already developed for Type 1 trajectories can be employed for Type 2 trajectories (descent guidance followed by recovery guidance). The aftershear guidance is based on the result that the aftershear portion of the trajectory depends strongly on the boundary conditions; therefore, the guidance schemes developed for Type 1 trajectories cannot be employed for Type 2 trajectories. For Type 2 trajectories, the aftershear guidance includes level flight guidance followed by ascent guidance. The level flight guidance is designed to achieve almost complete velocity recovery; the ascent guidance is designed to achieve the desired final quasi-steady state.The numerical results show that the guidance schemes for quasi-steady flight recovery yield a transition from quasi-steady flight to quasi-steady flight which is close to that of the optimal trajectory, allows the aircraft to achieve the final quasi-steady state, and has good stability properties.This research was supported by NASA Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company, and by Air Line Pilots Association.The authors are indebted to Dr. R. L. Bowles (NASA-LRC) and Dr. G. R. Hennig (BCAC) for helpful discussions.  相似文献   

7.
This paper is concerned with guidance strategies and piloting techniques which ensure near-optimum performance and maximum survival capability in a severe windshear. The take-off problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is assumed.First, six particular guidance schemes are considered, namely: constant alpha guidance; maximum alpha guidance; constant velocity guidance; constant absolute path inclination guidance; constant rate of climb guidance; and constant pitch guidance. Among these, it is concluded that the best one is the constant pitch guidance.Next, in an effort to improve over the constant pitch guidance, three additional trajectories are considered: the optimal trajectory, which minimizes the maximum deviation of the absolute path inclination from a reference value, while employing global information on the wind flow field; the gamma guidance trajectory, which is based on the absolute path inclination and which approximates the behavior of the optimal trajectory, while employing local information on the windshear and the downdraft; and the simplified gamma guidance trajectory, which is the limiting case of the gamma guidance trajectory in a severe windshear and which does not require precise information on the windshear and the downdraft.The essence of the simplified gamma guidance trajectory is that it yields a quick transition to horizontal flight. Comparative numerical experiments show that the survival capability of the simplified gamma guidance trajectory is superior to that of the constant pitch trajectory and is close to that of the optimal trajectory.Next, with reference to the simplified gamma guidance trajectory, the effect of the feedback gain coefficient is studied. It is shown that larger values of the gain coefficient improve the survival capability in a severe windshear; however, excessive values of the gain coefficient are undesirable, because they result in larger altitude oscillations and lower average altitude.Finally, with reference to the simplified gamma guidance trajectory, the effect of time delays is studied, more specifically, the time delay 1 in reacting to windshear onset and the time delay 2 in reacting to windshear termination. While time delay 2 has little effect on survival capability, time delay 1 appears to be critical in the following sense: smaller values of 1 correspond to better survival capability in a severe windshear, while larger values of 1 are associated with a worsening of the survival capability in a severe windshear.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516, and by Boeing Commercial Airplane Company.  相似文献   

8.
This paper is concerned with guidance strategies for near-optimum performance in a windshear. This is a wind characterized by sharp change in intensity and direction over a relatively small region of space. The take-off problem is considered with reference to flight in a vertical plane.First, trajectories for optimum performance in a windshear are determined for different windshear models and different windshear intensities. Use is made of the methods of optimal control theory in conjunction with the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. In this approach, global information on the wind flow field is needed.Then, guidance strategies for near-optimum performance in a wind-shear are developed, starting from the optimal trajectories. Specifically, three guidance schemes are presented: (A) gamma guidance, based on the relative path inclination; (B) theta guidance, based on the pitch attitude angle; and (C) acceleration guidance, based on the relative acceleration. In this approach, local information on the wind flow field is needed.Next, several alternative schemes are investigated for the sake of completeness, more specifically: (D) constant alpha guidance; (E) constant velocity guidance; (F) constant theta guidance; (G) constant relative path inclination guidance; (H) constant absolute path inclination guidance; and (I) linear altitude distribution guidance.Numerical experiments show that guidance schemes (A)–(C) produce trajectories which are quite close to the optimum trajectories. In addition, the near-optimum trajectories associated with guidance schemes (A)–(C) are considerably superior to the trajectories arising from the alternative guidance schemes (D)–(I).An important characteristic of guidance schemes (A)–(C) is their simplicity. Indeed, these guidance schemes are implementable using available instrumentation and/or modification of available instrumentation.Portions of this were presented at the AIAA 24th Aerospace Sciences Meeting, Reno, Nevada, January 6–9, 1986. The authors are indebted to Boeing Commercial Aircraft Company, Seattle, Washington and to Pratt and Whittney Aircraft, East Hartford, Connecticut for supplying some of the technical data pertaining to this study.The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, Hampton, Virginia for helpful discussions. They are also indebted to Mr. Z. G. Zhao, Aero-Astronautics Group, Rice University, Houston, Texas for analytical and computational assistance.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516. This paper, a continuation of Ref.1, is based in part on Refs. 2–3.  相似文献   

9.
This paper is concerned with the near-optimum guidance of an aircraft from quasi-steady flight to quasi-steady flight in a windshear. The take-off problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is considered. It is assumed that the power setting is held at the maximum value and that the aircraft is controlled through the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.First, trajectory optimization is considered. The optimal transition problem is formulated as a Chebyshev problem of optimal control: the performance index being minimized is the peak value of the modulus of the difference between the absolute path inclination and a reference value, assumed constant. Two types of optimal trajectories are studied: type 1 is concerned with gamma recovery (recovery of the initial value of the relative path inclination); and type 2 is concerned with quasisteady flight recovery (recovery of the initial values of the relative velocity, the relative path inclination, and the relative angle of attack). The numerical results show that the type 1 trajectory and the type 2 trajectory are nearly the same in the shear portion, while they diverge to a considerable degree in the aftershear portion of the optimal trajectory.Next, trajectory guidance is considered. A guidance scheme is developed so as to achieve near-optimum quasi-steady flight recovery in a windshear. The guidance scheme for quasi-steady flight recovery includes three parts in sequence. The first part refers to the shear portion of the trajectory and is based on the result that this portion of the trajectory depends only mildly on the boundary conditions; therefore, any of the guidance schemes already developed for type 1 trajectories can be employed (for instance, variable gamma guidance). The second part (constant gamma guidance) refers to the initial aftershear portion of the trajectory and is designed to achieve almost velocity recovery. The third part (constant rate of climb guidance) refers to the final aftershear portion of the trajectory and is designed to achieve almost complete restoration of the initial quasi-steady state.While the shear guidance and the initial aftershear guidance employ constant gain coefficients, the final aftershear guidance employs a variable gain coefficient. This is done in order to obtain accuracy and prompt response, while avoiding oscillations and overshoots. The numerical results show that the guidance scheme for quasi-steady flight recovery yields a transition from quasi-steady flight to quasi-steady flight which is close to that of the optimal trajectory, ensures the restoration of the initial quasi-steady state, and has good stability properties.This paper is based on Refs. 1 and 2.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516, and by Boeing Commercial Aircraft Company. The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, for helpful discussions.  相似文献   

10.
This paper deals with the identification of the wind profile along a flight trajectory by means of a three-dimensional kinematic approach. The approach is then applied to a recent aircraft accident, that of Flight Delta 191, which took place at Dallas-Fort Worth International Airport on August 2, 1985.In the 3D-kinematic approach, the wind velocity components are computed as the difference between the inertial velocity components and the airspeed components. The airspeed profile is obtained from flight measurements. The inertial velocity profile is obtained by integration of the measured inertial acceleration. The accelerometer biases and the impact values of the inertial velocity components are determined by matching the computed flight trajectory with the measured flight trajectory, available from the digital flight data recorder (DFDR) and air traffic control radar (ATCR). This leads to a least-square problem, which is solved analytically.Key to the precision of the identified wind profile is the correct identification of the accelerometer biases and the impact velocity components. In turn, this depends on the proper selection of the integration time. Because the measured data are noise-corrupted, unstable identification occurs if the integration time is too short. On the other hand, stable identification takes place if the integration time is properly chosen.Application of the method developed to the case of Flight Delta 191 shows that the identification problem has a stable solution if the integration time is larger than 180 sec. Numerical computation shows that, for Flight Delta 191, the maximum wind velocity difference determined with the 3D-kinematic approach was W x =124 fps in the longitudinal direction, W y =66 fps in the lateral direction, and W h =71 fps in the vertical direction.Notations a b measured acceleration, ft/sec2 - a bx ,a by ,a bz measured acceleration components, body axes system, ft/sec2 - b accelerometer bias, ft/sec2 - b x ,b y ,b z accelerometer bias components, body axes system, ft/sec2 - g acceleration of gravity, ft/sec2 - h altitude above sea level, positive upward, ft - m mass, lb sec2/ft - p air pressure, lb/ft2 - R gas constant for air, ft2/sec2 °R - S reference wing area, ft2 - t running time, sec - T air temperature, °R - V a airspeed, ft/sec - V ax ,V ay ,V az airspeed components, Earth axes system, ft/sec - V e inertial velocity, ft/sec - V ex ,V ey ,V ez inertial velocity components, Earth axes system, ft/sec - V ia indicated airspeed, ft/sec - W mg=weight, lb - W wind velocity, ft/sec - W x ,W y ,W z wind velocity components, Earth axes system, ft/sec - x, y, z Cartesian coordinates, Earth axes system, ft - x longitudinal coordinate, positive northward, Earth axes system, ft - y lateral coordinate, positive eastward, Earth axes system, ft - z vertical coordinate, positive downward, Earth axes system, ft - angle of attack, rad - path inclination, rad - pitch angle, rad - bank angle, rad - air density, lb sec2/ft4 - sideslip angle, rad - integration time, sec - roll angle, rad This research was supported by Air Line Pilots Association (ALPA), United States Aviation Underwriters (USAU), and Texas Advanced Technology Program, Grant No. TATP-003604020. This paper is based on Ref. 1.  相似文献   

11.
This paper deals with the identification of the wind profile along a flight trajectory by means of a two-dimensional dynamic approach. In this approach, the wind velocity components are computed as the difference between the inertial velocity components and the airspeed components. The airspeed profile as well as the nominal thrust, drag, and lift profiles are obtained from the available DFDR measurements. The actual values of the thrust, drag, and lift are assumed to be proportional to the respective nominal values via multiplicative parameters, called the thrust, drag, and lift factors. The thrust, drag, and lift factors plus the inertial velocity components at impact are determined by matching the flight trajectory computed from DFDR data with the flight trajectory available from ATCR data. This leads to a least-square problem which is solved analytically under the additional requirement of closeness of the multiplicative factors to unity. Application of the 2D-dynamic approach to the case of Flight Delta 191 shows that, with reference to the last 180 sec before impact, the values of the multiplicative factors were 1.09, 0.84, and 0.89; this implies that the actual values of the thrust, drag, and lift were 9% above, 16% below, and 11% below their respective nominal values. For the last 60 sec before impact, the aircraft was subject to severe windshear, characterized by a horizontal wind velocity difference of 123 fps and a vertical wind velocity difference of 80 fps. The 2D-dynamic approach is applicable to the analysis of windshear accidents in take-off or landing, especially for the case of older-generation, shorter-range aircraft which do not carry the extensive instrumentation of newer-generation, longer-range aircraft. The same methodology can be extended to the investigation of aircraft accidents originating from causes other than windshear (e.g., icing, incorrect flap position, engine malfunction), above all if its precision is further increased by combining the 2D-dynamic approach and the 2D-kinematic approach.  相似文献   

12.
This paper deals with the identification of the wind profile along a flight trajectory by means of a two-dimensional kinematic approach. In this approach, the wind velocity components are computed as the difference between the inertial velocity components and the airspeed components. The airspeed profile is obtained from flight measurements. The inertial velocity profile is obtained by integration of the measured inertial acceleration. The accelerometer biases and the impact values of the inertial velocity components are determined by matching the computed flight trajectory with the measured flight trajectory, available from the digital flight data recorder and air traffic control radar. This leads to a least-square problem, which is solved analytically for both the continuous formulation and the discrete formulation. Key to the precision of the identification process is the proper selection of the integration time. Because the measured data are noise-corrupted, unstable identification occurs if the integration time is too short. On the other hand, if the integration time is too long, the hypothesis of two-dimensional motion (flight trajectory nearly contained in a vertical plane) breaks down. Application of the 2D-kinematic approach to the case of Flight Delta 191 shows that stable identification takes place for integration times in the range τ = 120 to 180 sec before impact. The results of the 2D-kinematic approach are close to those of the 3D-kinematic approach (Ref. 1), particularly in terms of the inertial velocity components at impact (within 1 fps) and the maximum wind velocity differences (within 2 fps). The 2D-kinematic approach is applicable to the analysis of wind-shear accidents in take-off or landing, especially for the case of older-generation, shorter-range aircraft which do not carry the extensive instrumentation of newer-generation, longer-range aircraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号