首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
New pyrrolidinium-cation-based protic acid ionic liquids (PILs) were prepared through a simple and atom-economic neutralization reactions between pyrrolidine and Br?nsted acids, HX, where X is NO 3 (-), HSO 4 (-), HCOO (-), CH 3COO (-) or CF 3COO (-) and CH 3(CH 2) 6COO (-). The thermal properties, densities, electrochemical windows, temperature dependency of dynamic viscosity and ionic conductivity were measured for these PILs. All protonated pyrrolidinium salts studied here were liquid at room temperature and possess a high ionic conductivity (up to 56 mS cm (-1)) at room temperature. Pyrrolidinium based PILs have a relatively low cost, a low toxicity and exhibit a large electrochemical window as compared to other protic ionic liquids (up 3 V). Obtained results allow us to classify them according to a classical Walden diagram and to determinate their "Fragility". Pyrrolidinium based PILs are good or superionic liquids and shows extremely fragility. They have wide applicable perspectives for fuel cell devices, thermal transfer fluids, and acid-catalyzed reaction media as replacements of conventional inorganic acids.  相似文献   

2.
Novel alkylammonium-cation-based protic acid ionic liquids (PILs) were prepared through a simple and atom-economic neutralization reaction between an amine, such as diisopropylmethylamine, and diisopropylethylamine, and a Br?nsted acid, HX, where X is HCOO-, CH 3COO-, or HF2-. The density, viscosity, acidic scale, electrochemical window, temperature dependency of ionic conductivity, and thermal properties of these PILs were measured and investigated in detail. Results show that protonated alkylammonium such as N-ethyldiisopropyl formate and N-methyldiisopropyl formate are liquid at room temperature and possess very low viscosities, that is, 18 and 24 cP, respectively, at 25 degrees C. An investigation of their thermal properties shows that they present a wide liquid range up to -100 degrees C and a heat thermal stability up to 350 degrees C. Alkylammonium-based PILs have a relatively low cost and low toxicity and show a high ionic conductivity (up a 8 mS cm(-1)) at room temperature. They have wide applicable perspectives for fuel cell devices, thermal transfer fluids, and acid-catalyzed reaction media and catalysts as replacements of conventional inorganic acids.  相似文献   

3.
Neutralization of an organic super-strong base, 1,8-diazabicyclo-[5,4,0]-undec-7-ene (DBU), with different Br?nsted acids affords a novel series of protic ionic liquids (PILs) with wide variations in the ΔpK(a) of the constituent amine and acids. The physicochemical properties of these PILs, such as thermal properties, density, conductivity, viscosity, self-diffusion coefficient, vibrational stretching frequency, and (1)H-chemical shifts of the N-H bond, have been studied in detail. The generated PILs have melting temperatures below 100 °C, and six are liquids at ambient temperatures. Thermogravimetric analyses (TGA) conducted under isothermal and programmed heating conditions have shown that PILs with ΔpK(a)≥ 15 exhibit good thermal stability similar to aprotic ionic liquids. For instance, PILs with ΔpK(a) > 20 show remarkably high short-term thermal stability up to ca. 450 °C under a nitrogen atmosphere. The viscosity, ionic conductivity, and molar conductivity of the PILs fit well with the Vogel-Fulcher-Tamman equation for their dependencies on temperature. The relative cationic and anionic self-diffusion coefficients of the PILs estimated by the pulsed-field gradient spin-echo (PGSE) NMR method appear to be dependent on the structure and strength of the Br?nsted acids. Evaluation of the ionicity based on both the Walden plot and PGSE-NMR revealed that it increases until ΔpK(a) becomes 15 for the PILs.  相似文献   

4.
We report the synthesis and characterization of a series of novel imidazolium cation and bis(trifluoromethane)sulfonimide anion (TFSI?)‐based ionic liquid (IL) model compounds and their corresponding polymeric ionic liquids (PILs) with various tethering groups. Ethylene oxide repeating units were attached as tethering groups to an imidazolium cation to optimize the glass transition temperatures (Tg) and ionic conductivities of the PILs. The novel PILs exhibit excellent conductivity values of around 8 × 10?4 S/cm at room temperature. The thermophysical and electrochemical properties of ILs, including thermal transition, ionic conductivity, and rheological behavior, were characterized to investigate the effect of tethering groups. We conclude that the length of poly(ethylene oxide) tethering group has a tremendous effect on both physical property and electrochemical behavior and that charge carrier density is dominant in defining ionic conductivity with free ILs, whereas ion mobility plays a more important role after polymerization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1339–1350  相似文献   

5.
离子液体具有蒸汽压极低、热稳定性好、热容低和可以根据目标需求进行设计等特性,能克服传统CO2捕集工艺的诸多不足,因而成为目前CO2捕集溶剂的研究热点。本文主要综述了普通离子液体、功能化离子液体、支撑型离子液体膜、聚合型离子液体和离子液体复配溶液在CO2捕集方面的应用研究进展,评述了各种方法的优势和缺点,并在此基础上提出...  相似文献   

6.
Novel protic ionic liquids (PILs) based on a tributyl phosphonium cation have been synthesised and characterised, revealing that the phosphonium based ILs show high thermal stability, high ionic conductivity and facile proton reduction compared to the corresponding ammonium based ILs.  相似文献   

7.
According to an EI-MS study of 1,1,3,3-tetramethylguanidium-based protic ionic liquids (PILs), it has been concluded that not all PILs exist as molecular aggregates in the gas phase. The detection of both ions of m/z 115.0 and m/z 116.0 for the 1,1,3,3-tetramethylguanidinium trifluoromethylsulfonate (TMGS) protic ionic liquid indicates that both the molecular and ionic aggregates co-exist in the gas phase, which is to say that the TMGS may also evaporate via the ionic aggregates just like aprotic ionic liquids. Furthermore, investigation on triethylamine-based and 1-methylimidazole-based PILs confirmed that the gas phase structure of PILs depends on both the acidity and basicity of the corresponding acid and base.  相似文献   

8.
The physicochemical properties of 22 protic ionic liquids (PILs) and 6 protic molten salts, and the self-assembly behavior of 3 amphiphiles in the PILs, are reported. Structure-property relationships have been explored for the PILs, including the effect of increasing the substitution of ammonium cations and the presence of methoxy and hydroxyl moieties in the cation. Anion choices included the formate, pivalate, trifluoroacetate, nitrate, and hydrogen sulfate anions. This series of PILs had a diverse range of physicochemical properties, with ionic conductivities up to 51.10 mS/cm, viscosities down to 5.4 mPa.s, surface tensions between 38.3 and 82.1 mN/m, and densities between 0.990 and 1.558 g/cm3. PILs were designed with various levels of solvent cohesiveness, as quantified by the Gordon parameter. Fourteen PILs were found to promote the self-assembly of amphiphiles. High-throughput polarized optical microscopy was used to identify lamellar, hexagonal, and bicontinuous cubic amphiphile self-assembly phases. The presence and extent of amphiphile self-assembly have been discussed in terms of the Gordon parameter.  相似文献   

9.
Protic ionic liquids (PILs) in solution especially in water have attracted more and more attention due to their unique properties. The solvation of PILs in water is important to their properties and applications. To explore the solvation of bio-based PILs in water, acidity of 49 [AA]X amino acid ionic liquids (AAILs) consisting of 7 different cations and 7 different anions was studied as a favorable probe. The pKa values for [AA]X PILs containing same cations were obtained and discussed. The acidity strength of the [AA]X PILs varies with both cation and anion which does not follow the conventional assumption that the acidity for PILs is independent of anions. The acidic discrepancy of [AA]X PILs aqueous solution is probably mediated by the formation of ion pairs according to a revised solvation model of PILs. Quantum-chemistry calculation was employed to unpuzzle anion's different effects on the acid balance of cations where cation-anion hydrogen bonds play an important role. Such difference in acidity allows us to understand the formation of solvated ion pairs. This work provides an insight into the fundamental solvation of PILs from acid perspective and their influence on acidity properties for the first time.  相似文献   

10.
A set of eight functional 4‐vinyl‐1,2,3‐triazolium monomers were synthesized using copper catalyzed azide‐alkyne 2 + 3 Hüisgen cycloaddition. These vinyl‐trizolium monomers readily polymerized via free radical polymerization. The physical properties of the vinyl‐triazolium based poly(ionic liquid)s (PILs) are strongly dependent on the pendant functional groups. These polymers were characterized for glass transition temperature (Tg), solubility, and the thermal decomposition. The vinyl‐triazolium based PILs offer an efficient route to highly functional PILs with the advantage of facile synthesis and the ability to incorporate many desirable functional moieties. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 417–423  相似文献   

11.
Polarity studies in two classes of imidazolium-based protic ionic liquids (PILs) possessing [HSO(4)](-), [HCOO](-), [CH(3)COO](-) and [CH(3)CH(2)COO](-) anions were carried out using a solvatochromic method from 298.15 to 353.15 K. For 1-methylimidazolium class of PILs, E(T)(30) was found to be independent over the entire range of temperature, while E(T)(30) was noted to decrease with a rise in temperature in the case of 1-butylimidazolium class of PILs containing [CH(3)COO](-) and [CH(3)CH(2)COO](-) anions. The E(T)(30) value decreases in both the classes upon varying the anions ([HSO(4)](-), [HCOO](-), [CH(3)COO](-) and [CH(3)CH(2)COO](-)). The E(T)(30) value is controlled by hydrogen bond acceptor basicity, β, and dipolarity/polarizability, π*. The E(T)(30) value for PILs varies inversely to the strength of the coulombic interaction between ions in PILs. Strong interactions between ions lead to lower E(T)(30) values. Unlike the poor thermal effect on E(T)(30), the Kamlet-Taft parameters i.e. α, β and π* have pronounced thermal effect in the imidazolium-based PILs. Variation in the Kamlet-Taft parameters is controlled by the stabilization of ions and the degree of proton transfer from Br?nsted acid to Br?nsted base.  相似文献   

12.
The efficient and environmentally friendly method for preparation of novel flocculants using ILs with non-toxic anions are presented. Poly(ionic liquids) (PILs) were prepared by the photopolymerization of polymerizable ILs. All monomers were obtained via anion exchange reaction. Additionally, the polymers were fully characterized by 1H NMR and FTIR spectroscopy, thermal analysis and gel permeation chromatography. Furthermore, these cationic polymers containing harmless anions were used as flocculants. The efficiency was tested using the yeast suspension as a model system of negatively charged particles. The synthesized water-soluble PILs exhibited high molecular weight and significant flocculation efficiency in the wide range of concentrations. Furthermore, the results of experiments show that flocculation of yeast occurs by charge neutralization and bridging mechanism.  相似文献   

13.
The ability of a series of non-ionic dodecyl poly(ethylene oxide) surfactants to form micelles in a variety of protic ionic liquids (PILs) was investigated using small and wide angle X-ray scattering (SAXS/WAXS). The C(12)E(n) surfactants with n = 3-8 were examined in PILs which contained either an ethyl, diethyl, triethyl, butyl, pentyl, ethanol or pentanol-ammonium cation in conjunction with either a nitrate or formate anion. The ability of the PILs to support micelles of these surfactants was highly dependent on their liquid nanostructure. The PILs containing hydroxyl groups on the cations were not nanostructured and had very low surfactant solubility (<1 wt%). The highly nanostructured PILs with butylammonium or pentylammonium cations contain large non-polar domains, and had excellent surfactant solubility, but due to the greater hydrocarbon solubility they had insufficient drive from the "solvophobic effect" to enable micelle formation. The PILs of ethylammonium nitrate (EAN), propylammonium nitrate (PAN), diethylammonium formate (DEAF) and triethylammonium formate (TEAF) had smaller non-polar domains, and all supported micelle formation below 20 wt% surfactant. The critical micelle concentration (CMC) of surfactants in EAN were two orders of magnitude greater than in water. The minimum molecular areas of the poly(ethylene oxide) head groups at the air/ionic liquid interface, A(min), were significantly larger in EAN than in water. The SAXS patterns from the micelles present in EAN fitted well to ellipsoids, whereas the micelles present in PAN fitted well to spheres. The nanostructure of select PILs was also influenced by the presence of surfactants.  相似文献   

14.
Carbon materials (CMs) hold immense potential for applications across a wide range of fields. However, current precursors often confront limitations such as low heteroatom content, poor solubility, or complicated preparation and post-treatment procedures. Our research has unveiled that protic ionic liquids and salts (PILs/PSs), generated from the neutralization of organic bases with protonic acids, can function as economical and versatile small-molecule carbon precursors. The resultant CMs display attractive features, including elevated carbon yield, heightened nitrogen content, improved graphitic structure, robust thermal stability against oxidation, and superior conductivity, even surpassing that of graphite. These properties can be elaborate modulated by varying the molecular structure of PILs/PSs. In this Personal Account, we summarize recent developments in PILs/PSs-derived CMs, with a particular focus on the correlations between precursor structure and the physicochemical properties of CMs. We aim to impart insights into the foreseeable controlled synthesis of advanced CMs.  相似文献   

15.
合成了一系列由聚(1-乙烯基-3-乙酸烷基酯咪唑)阳离子和二(三氟甲基磺酰亚胺)阴离子(TFSI)组成的聚离子液体并进行了表征.热重分析(TGA)和电导率分析表明,在聚(甲基丙烯酸甲酯,醋酸乙烯酯)(P(MMA—VAc))基体中掺杂聚离子液体后,体系的热稳定性和离子电导率均大为改善,红外光谱(FT—IR)、示差扫描量热分析(DSC)、X射线衍射(XRD)和扫描电子显微镜(SEM)等测试结果亦可佐证.讨论了离子液体的结构以及不同种锂盐(LiC104,LiBF4,LiTFSI)对电解质性能的影响.由PIL/P(MMA—VAc)/LiTFSI组成的共混电解质膜,在可见光下透过率≥90%,可作为离子导电材料用于电致变色器件(ECD),显示了其优良的电化学性能.  相似文献   

16.
We synthesized one quaternary ammonium polymeric ionic liquids(PILs)P[VBTHEA]Cl and three imidazolium PILs of P[VEIm]Br, P[VEIm]BF_4, P[VEIm]PF_6 by free-radical polymerization in solution. These PILs were characterized by FT-IR,~1 H-NMR,~(13)C-NMR, TGA, XRD and SEM. Their CO_2 adsorption capacities were measured under different pressures and temperatures by constant-volume technique. It was observed that quaternary ammonium PILs of P[VBTHEA]Cl have higher adsorption capacity for CO_2 than those imidazolium PILs, following P[VBTHEA]Cl P[VEIm]PF_6 P[VEIm]BF_4 P[VEIm]Br, which may be ascribed to higher positive charge density on ammonium cation than that on imidazolium cation and thus stronger interaction with CO_2, consistent with the results from dual-mode adsorption model that ammonium PILs have much higher CO_2 bulk absorption than imidazolium PILs. CO_2 adsorption capacity of P[VBTHEA]Cl is 9.02 mg/g under 295 K and 1 bar, which is comparable to that of some other PILs, and is much higher than that of the corresponding ILs monomer. These PILs have good adsorption selectivity for CO_2 over N_2 and regeneration efficiency.  相似文献   

17.
A series of well-defined core cross-linked star (CCS) polymeric ionic liquids (PILs) were synthesized via a three-step approach. First, the styrenic imidazole-based CCS polymer (S-PVBnIm) was prepared by the RAFT-mediated heterogeneous polymerization in a water/ethanol solution, followed by the quaternization of S-PVBnIm with bromoalkanes and anion exchange. The CCS polymers were characterized by gel permeation chromatography (GPC), nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). The obtained CCS polymers were used as the effective emulsifiers for oil-in-water high internal phase emulsions (HIPEs). Multiple oils with different polarity including n-dodecane, undecanol, toluene and octanol were emulsified using 0.5 wt% S-PVBnIm aqueous solution under the acidic condition to form HIPEs with long-term stabilities. The excellent emulsification properties of CCS PILs were demonstrated by HIPE formation for a variety of oils. The properties of HIPEs in terms of emulsion type and oil droplet size were characterized by the confocal laser scanning microscopy (CLSM). The intriguing capability of CCS PILs to stabilize HIPEs of various oils holds great potentials for the practical applications.  相似文献   

18.
In this work how the microscopic properties of a molecular solvent affect the chemical environment of the protic ionic liquids (PILs) was analyzed. Using Reichardt’s dye as indicator of acidity, new acidity constant values for eight PILs (pKaPILs) were determined by spectrophotometric titration. Modifying the character hydrogen bonding donor of the molecular solvent it is possible to handle the PIL acid strength. Thus, we can turn basic PILs into acidic ones thereby the molecular solvent could be used as ‘additive’ for PILs, which allowed us to tune PILs design.  相似文献   

19.
Ionic liquids(ILs) have appeared as the most promising electrolytes for lithium-ion batteries, owing to their unique high ionic conductivity, chemical stability and thermal stability properties. Poly(ionic liquid)s(PILs) with both IL-like characteristic and polymer structure are emerging as an alternative of traditional electrolyte. In this review, recent progresses on the applications of IL/PIL-based semi-solid state electrolytes, including gel electrolytes, ionic plastic crystal electrolytes, hybrid electrolytes and single-ion conducting electrolytes for lithium-ion batteries are discussed.  相似文献   

20.
The combination of zeolitic imidazolate framework-8 (ZIF-8) and ionic liquids (ILs) to create porous ionic liquids (PILs) is highly significant for efficient carbon dioxide (CO2) capture and the advancement of carbon capture, utilization, and storage (CCUS) technologies. To further investigate the CO2 capture characteristics of different PILs, two different-sized ZIF-8 structures and two functionalized ILs were prepared. Additionally, the enhancement factor of the reaction process was calculated using the dual-film theory and mass transfer coefficient. The results demonstrated that the original [PMIm]Cl had low CO2 absorption capacity at ambient temperature and pressure, whereas the functionalized ILs had a maximum CO2 capture capacity of approximately .31 mol/mol, with the 20 wt% concentration of tetraethylene pentamine-2-methylimidazole ([TEP][MIm]) exhibiting the highest CO2 capture capacity of around 1.93 mol/mol. The synthesized PILs demonstrated a maximum CO2 capture capacity of approximately 2.22 and 2.16 mol/mol at 20 and 10 wt% ionic concentrations, respectively, with a porous ionic liquid addition of 1.0/100 g. The corresponding enhancement factors were 1.53 and 1.59, respectively. These findings have significant implications for CCUS technology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号