首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
At around the critical Reynolds number Re = (1.5–4.0)·105 there is an abrupt change in the pattern of transverse subsonic flow past a circular cylinder, and the drag coefficient Cx decreases sharply [1]. A large body of both experimental and computational investigations has now been made into subsonic flow past a cylinder [1–4]. A significant contribution to a deeper understanding of the phenomenon was made by [4], which gives a physical interpretation of a number of theoretical and experimental results obtained in a wide range of Re. Nevertheless, the complicated nonstationary nature of flow past a cylinder with separation and the occurrence of three-dimensional flows when two-dimensional flow is simulated in wind tunnels do not permit one to regard the problem as fully studied. The aim of the present work was to make additional experimental investigations into transverse subsonic flow past a cylinder and, in particular, to study the possible asymmetric stable flow regimes near the critical Reynolds number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 154–157, March–April, 1980.  相似文献   

2.
Theoretical study of a three-dimensional laminar boundary layer is a complex problem, but it can be substantially simplified in certain particular cases and even reduced to the solution of ordinary differential equations.One such particular case is the flow of a compressible gas on a streamline in conical external flow. The case is of considerable practical importance because the local heat fluxes may take extremal values on such lines.Such flow, except for the conical case, has been examined [1–4], and an approximate method has been given [1] on the basis of integral relationships and a special form for the approximating functions. A numerical solution has been given [2, 3] for such flow around an infinite cylinder. It was assumed in [1–3] that the Prandtl number and the specific heats were constant, and that the dynamic viscosity was proportional to temperature. Heat transfer has been examined [4] near a cylinder exposed to a flow of dissociated air.Here we give results from numerical solution of a system of ordinary differential equations for the flow of a compressible gas in a laminar boundary layer on streamlines in conical external flow, with or without influx or withdrawal of a homogeneous gas. It is assumed that the gas is perfect and that the dynamic viscosity has a power-law temperature dependence.  相似文献   

3.
In the present paper, we consider the hypersonic flow past a rectangular profile and the end of a cylinder when there is strong distributed blowing of gas through their flat front parts. The injected gas is assumed to be inviscid, and the pressure on the contact surface which separates the exterior flow and the blowing layer is determined in accordance with Newton's formula. The use of perturbation theory in the case of a thin blowing layer has made it possible to obtain limit problems for different flow regions, and the analytic solution and subsequent asymptotic matching of these problems yield the form of the contact surface and the distribution of the pressure on the body. It is shown that the drag of the body depends nonmonotonically on the flow rate of the blown gas. The optimal blowing parameters and the corresponding minimal drag are determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 154–166, January–February, 1982.I thank V. A. Levin for interest in the work and valuable discussions.  相似文献   

4.
In order to reduce the drag of bodies in a viscous flow it has been proposed to apply to the surface exposed to the flow a layer of magnetic fluid, which can be retained by means of a magnetic field and thus act as a lubricant between the external flow and the body [1, 2]. In [1] the hydrodynamic drag of a current-carrying cylindrical conductor coated with a uniform layer of magnetic fluid was theoretically investigated at small Reynolds numbers. In order to simplify the equations of motion, the Oseen approximation was introduced for the free stream and the Stokes approximation for the magnetic fluid [3]. This approach has led to the finding of an exact analytic solution from which it follows that at Reynolds numbers Re 1 the drag of the cylinder can be considerably reduced if the viscosity of its magnetic-fluid coating is much less than the viscosity of the flow. The main purpose of the present study is to investigate, with reference to the same problem, how the magnetic-fluid coating affects the hydrodynamic drag at Reynolds numbers 1 Re 102–103, i.e., under separated flow conditions. In this case the simplifications associated with neglecting the nonlinear inertial terms in the Navier—Stokes equation are inadmissible, so that a solution can be obtained only by numerical methods.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 11–16, May–June, 1986.  相似文献   

5.
In [1], the drag was found that acts on a circular gas bubble between two parallel plates in a slow viscous flow. In the present paper, the problem considered in [1] is solved for a body of arbitrary shape under the assumption that the conditions of a Hele-Shaw flow are satisfied. An expression is obtained for the drag containing only one coefficient in the expansion of the complex potential in a Laurent series.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 161–162, September–October, 1979.  相似文献   

6.
Problems similar to those considered in [1, 2] are studied, namely, slow flow over a uniformly heated (or cooled) spherical particle and flow past a weakly nonuniformly heated sphere in the absence of external body forces and with allowance for thermal stresses in the gas. The use of an improved method of numerical solution [3] has made it possible to advance into the region of large temperature differences. A new effect is found: allowance for the thermal stresses in the case of flow around a strongly heated sphere leads to the appearance of a suction force instead of a drag. In the case of flow around a nonuniformly heated sphere the influence of thermal stresses is unimportant. The problems are considered for two temperature dependences of the transport coefficients.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 170–175, October–December, 1981.  相似文献   

7.
Many studies have been made of the optimization of the shape of bodies in a gas stream. However, the majority of these have been made for supersonic and hypersonic flow in the limiting case of a continuum [1], and only a few studies have been made [1–3] for the case of flow over a body of a rarefied gas (mainly a free molecular stream). In the present paper, the problem of shape optimization is considered for hypersonic flow of a gas of different rarefactions over a body. Numerical methods are used to investigate the influence of the Reynolds number on the shape and drag of optimal figures of revolution.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 158–161, May–June, 1980.  相似文献   

8.
The transition flow is considered of a fibrous suspension in a pipe. The flow region consists of two subregions: at the center of the flow a plug formed by interwoven fibers and fluid moves as a rigid body; between the solid wall and the plug is a boundary layer in which the suspension is a mixture of the liquid phase and fibers separated from the plug [1–3]. In the boundary region the suspension is simulated as an anisotropic Ericksen—Leslie fluid [4, 5] which satisfies certain additional conditions. Equations are obtained for the velocity profile and drag coefficient of the pipe, which are both qualitatively and quantitatively in good agreement with the experimental results [6–8]. Within the framework of the model, a mechanism is found for reducing the drag in the flow of a fibrous suspension as compared to the drag of its liquid phase.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 91–98, September–October, 1985.  相似文献   

9.
The intense evaporation of bodies moving in the atmospheres of planets at high supersonic velocities has been partly simulated both theoretically [1–5] (numerical calculations of strong blowing in the framework of the Navier-Stokes equations were also made at the Scientific-Research Institute of Mechanics at the Moscow State University by É. A. Gershbein and A. F. Kolesnikov [6]) as well as experimentally [7–9]. Below, the results are given of investigations of strong blowing of gas from the flat end of a cylinder into a supersonic flow at Reynolds numbers such that the mixing layer separating the blown and the oncoming gas is fairly thin. In this case, the mixing layer can be regarded as a contact surface, so that the problem of blowing can be solved in the framework of Euler's equations. The results of a numerical solution are compared with the results of experiments on the separation and profile of the shock wave, the thickness of the blowing layer on the axis, and also on the pressure distribution on the end of the cylinder. It was established experimentally, and then confirmed numerically that there is a downwash of the blown gas on the periphery of a porous end. It is shown that for the same blowing parameter K, which is equal to the ratio of the dynamic head of the blown gas to the dynamic head of the oncoming gas, and for a given distribution of K over the surface of the body the contact surface tends to a certain limiting position with increasing Mach number of the oncoming flow, i.e., the profile of the contact surface is stabilized. The influence of the adiabatic exponent on the thickness of the blowing layer is estimated. The present investigations continue earlier experimental studies, the main results of which have been presented in [9].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 91–98, January–February, 1980.  相似文献   

10.
Several theoretical and experimental studies of supersonic flow past a blunt body located in the wake behind another body have been made [1–7]. It has been shown that a reverse-circulation flow can occur in the shock layer at the front surface. The possibility of such a flow forming depends on the nonuniformity of the freestream flow and the Reynolds number. This paper presents new results of the theoretical study of the structure of the shock wave at the front surface of such a sphere, obtained on the basis of numerical solution of Navier-Stokes equations. It is shown that for a fixed nonuniformity of the freestream flow, an increase in the Reynolds number and cooling of the surface of the body lead to the formation of a secondary vortex in the region where the contour of the body intersects the axis of symmetry. A study is made of the variations of the drag and heat transfer parameters over the front surface of a cooled and thermally insulated sphere. The possibility of numerical simulation of the flow on the basis of the Euler equations is discussed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 143–148, May–June, 1985.  相似文献   

11.
Results of numerical and experimental modeling of a supersonic flow (M = 4.85) around a model of a streamwise-aligned cylinder with a cellular-porous insert permeable for the gas on the frontal face of the cylinder are described. Experimental data on the influence of the pore structure and the length of the porous cylindrical insert on the model drag, pressure on the frontal face of the cylinder, and flow pattern are obtained. Numerical modeling includes solving Favre-averaged Navier-Stokes equations, which describe the motion of a viscous compressible heat-conducting gas. The system is supplemented with a source term taking into account the drag of the porous body within the framework of the continuum model of filtration. Data on pressure and velocity fields inside the porous body are obtained in calculations, and the shape of an effective pointed body whose drag is equal to the drag of the model considered is determined. The calculated results are compared with the measured data and schlieren visualization of the flow field.  相似文献   

12.
When a gas flows with hypersonic velocity over a slender blunt body, the bow shock induces large entropy gradients and vorticity near the wall in the disturbed flow region (in the high-entropy layer) [1]. The boundary layer on the body develops in an essentially inhomogeneous inviscid flow, so that it is necessary to take into account the difference between the values of the gas parameters on the outer edge of the boundary layer and their values on the wall in the inviscid flow. This vortex interaction is usually accompanied by a growth in the frictional stress and heat flux at the wall [2, 3]. In three-dimensional flows in which the spreading of the gas on the windward sections of the body causes the high-entropy layer to become narrower, the vortex interaction can be expected to be particularly important. The first investigations in this direction [4–6] studied the attachment lines of a three-dimensional boundary layer. The method proposed in the present paper for calculating the heat transfer generalizes the approach realized in [5] for the attachment lines and makes it possible to take into account this effect on the complete surface of a blunt body for three-dimensional laminar, transition, or turbulent flow regime in the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 80–87, January–February, 1981.  相似文献   

13.
Supersonic nonuniform gas flow over blunt bodies without surface injection has previously been investigated by both numerical [1–3] and experimental [3] methods. The processes of surface vaporization under the influence of an intense heat flux, artificial gas injection and surface combustion [4] are all worthy of study. The problem of the interaction between a nonuniform supersonic flow and a body in the presence of intense gas injection from the surface is examined and an analytical solution is constructed.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 126–134, November–December, 1989.  相似文献   

14.
One of the most basic examples of fluid-structure interaction is provided by a tethered body in a fluid flow. The tendency of a tethered buoy to oscillate when excited by waves is a well-known phenomenon; however, it has only recently been found that a submerged buoy will act in a similar fashion when exposed to a uniform flow at moderate Reynolds numbers, with a transverse peak-to-peak amplitude of approximately two diameters over a wide range of velocities. This paper presents results for the related problem of two-dimensional simulations of the flow past a tethered cylinder. The coupled Navier–Stokes equations and the equations of motion of the cylinder are solved using a spectral-element method. The response of the tethered cylinder system was found to be strongly influenced by the mean layover angle as this parameter determined if the oscillations would be dominated by in-line oscillations, transverse oscillations or a combination of the two. Three branches of oscillation are noted, an in-line branch, a transition branch and a transverse branch. Within the transition branch, the cylinder oscillates at the shedding frequency and modulates the drag force such that the drag signal is dominated by the lift frequency. It is found that the mean amplitude response is greatest at high reduced velocities, i.e., when the cylinder is oscillating predominantly transverse to the fluid flow. Furthermore, the oscillation frequency is synchronized to the vortex shedding frequency of a stationary cylinder, except at very high reduced velocities. Visualizations of the pressure and vorticity in the wake reveal the mechanisms behind the motion of the cylinder.  相似文献   

15.
The flow of an ideal incompressible weightless fluid that fills a rotating cylinder is investigated. The rotation axis of the cylinder is outside it and parallel to the cylinder generator, and the form of the cylinder section is determined in the process of solution of the problem. In the paper, a class of exact solutions of the problem is obtained in terms of elementary functions for different angular velocities of the cylinder. In these solutions, the flow field is formed by two straight vortex filaments parallel to the cylinder generator. The intensities of the vortex filaments are determined by the angular velocity . Investigations of ideal fluid flow in rotating vessels were begun already in the last century by Stokes and Zhukovskii [1]. The subject has been reviewed in monographs [2, 3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No, 1, pp. 71–75, January–February, 1984.  相似文献   

16.
The stability of a circular cylinder in an unsteady gas stream is investigated in the case when shock waves are formed and interact in the flow region. The problem is of interest for simulating processes in light-gas mortars [2, 3] in which free bodies are launched by a gas stream [4] and the launching tube will be destroyed if the launched object strikes it at a high velocity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 180–184, March–April, 1981.  相似文献   

17.
The problem of flow past a permeable cylinder at low Reynolds numbers is of interest for the solution of a number of problems in chemical technology in, for example, the design of porous electrodes and porous catalysts and in the calculation of nonstationary filtration of aerosols by fibrous filters. In the present paper, we solve the problem of transverse flow of a viscous fluid past a continuous cylinder in a porous shell and, in particular, in the case of a porous cylinder under conditions of constrained flow (system of cylinders) and an isolated cylinder at arbitrary permeability. The analogous problem of Stokes flow past permeable spheres has been solved in a number of papers [1–3].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 6, pp. 122–124, November–December, 1979.  相似文献   

18.
The shape of bodies of minimal drag moving in rarefied gas in the entire range of flight heights is investigated at present on the basis of the use of local interaction models [1]. Corresponding theoretical investigations have been published in [2, 3] for the case of bodies of rotation and in [4] for three-dimensional winged bodies, and detailed numerical investigations have been carried out in [2, 5–7]. In the present paper, an analytic investigation is carried out for the purpose of determining the optimal shape of three-dimensional bodies with minimal drag in an intermediate region of flight heights in rarefied gas.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 112–117, September–October, 1986.  相似文献   

19.
The problem is considered of constructing a semi-infinite axisymmetric body with minimum drag in subsonic flow of an ideal gas. This problem is formulated as the problem of finite-dimensional minimization by prescribing the shape of the body in parametric form and applying the projection method for solving a flow problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 108–113, March–April, 1985.  相似文献   

20.
Vibrational convection under conditions of weightlessness has now been investigated for closed cavities of various geometries (see, for example, [1–3]). However, the question of vibrational convection developing around a heated body in an unconfined fluid remains open. Here, the convection developing under conditions of weightlessness about a uniformly heated infinite cylinder vibrating at high frequencies together with the fluid in a direction perpendicular to the cylinder axis is considered. The nonlinear equations of averaged motion are solved numerically by a finite-difference method. It is shown that at high values of the vibrational Grashof number boundary-layer type flow with a structure consisting of two symmetrical jets perpendicular to the direction of vibration is formed. The flow and heat transfer characteristics are determined.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 23–26, May–June, 1989.The author wishes to thank E. M. Zhukovitskii for supervising the work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号