首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
主要合成了具有尖晶石结构的Li4Ti5O12亚微米球电极材料,并研究了其作为锂离子电池负极材料的电化学性能.材料的制备分为三个步骤:TiCl4水解得到金红石相的TiO2,然后将得到的TiO2与LiOH进行水热反应得到中间相LiTi2O4+δ,最后将中间相高温煅烧得到尖晶石结构的Li4Ti5O12.采用XRD、SEM和TEM等手段对材料的结构和形貌进行表征.结果表明,尖晶石相的Li4Ti5O12负极材料具有分级结构,是由20~30nm的小颗粒堆积成约为200~300nm的亚微米球.将制备的Li4Ti5O12材料进行恒电流充放电测试表明,材料具有优异的倍率放电性能和较好的循环可逆性;在1C充放电时,首次放电比容量达到174.3mAh/g,在第5~50次循环过程中仅有微小的不可逆容量损失.采用循环伏安法测得Li+的扩散系数为1.03×10-7cm2/s.研究表明合成的Li4Ti5O12亚微米球在高效可充电锂离子电池中具有良好的应用前景.  相似文献   

2.
通过简单的溶胶-凝胶方法成功合成一系列Nasicon型LiTi2-xMnx(PO4)3@C(x=0.02,0.05,0.08和0.1)。掺入异价元素锰增大了LiTi2(PO4)3的晶格参数,从而扩大Li^+的传输通道,并降低了电化学阻抗。同时材料的表面包覆均匀的导电碳层以提高电子的传输速率。所有复合材料通过粉末X射线衍射仪及透射电子显微镜进行表征。LiTi1.92Mn0.08(PO4)3@C作为锂离子电池正极材料表现出最佳的电化学性能。在0.1C倍率下,电池循环150次后放电容量高达145 mAh·g^-1,增大至5C倍率下首次充放电达到132mAh·g^-1。优异的电化学性能可归因于掺杂提高了锂离子扩散系数及包覆碳材料降低了传荷阻抗。  相似文献   

3.
锂离子电池LiMn2O4正极材料的高温改性;锂离子电池;正极材料;尖晶石;LiMn2O4;包覆  相似文献   

4.
柠檬酸溶解废锂离子电池正极材料的研究   总被引:1,自引:0,他引:1  
探求废锂离子电池正极材料LiMn2O4在柠檬酸溶液中的溶解条件,为废旧电池的进一步回收利用奠定基础。采用单因素与正交实验相结合的方法,对废锂离子电池正极材料LiMn2O4在柠檬酸溶液中的溶解条件进行研究,结果表明,废锂离子电池正极材料LiMn2O4在柠檬酸溶液中适宜的溶解条件为:柠檬酸浓度1.0mol.L-1、溶解温度45℃、H2O2加入量5.0%、料液比60g.L-1,在此条件下正极材料LiMn2O4在柠檬酸溶液中的溶解率达到99.56%。对柠檬酸溶解废锂离子电池正极材料LiMn2O4的机理进行了探讨,认为在加入H2O2之前,尖晶石LiMn2O4中的Mn3+发生歧化反应生成Mn2+以及MnO2,而Mn4+在溶液中水解生成MnO2。MnO2与柠檬酸发生氧化还原反应生成丙酮二羧酸及Mn2+。加入H2O2之后,H2O2作为还原剂能够将剩余的MnO2全部还原为Mn2+,使正极材料LiMn2O4在柠檬酸溶液中的溶解率得以提高。  相似文献   

5.
调研了全球锂离子电池正极材料LiCoO2、LiNiO2、LiMn2O4、LiFePO4 LiNi0.8 Co0.2 O2和Li(CoMnNi)1/3O2的学术研究论文和技术专利申请与授权数按年和语言分布情况。综述了前4种材料作锂离子电池正极材料尚存在的问题和解决对策进展。例如,通过掺杂其他元素、表面包覆、细化材料颗粒及改善正极结构设计来提高正极材料的充放电容量、寿命、功率密度和电池高功率密度使用时的安全性。  相似文献   

6.
采用高温固相反应法制备改性的LiMn2O4锂离子电池正极材料.利用SEM、XRD等方法表征产物的结构特性.结果表明:所得产物均具尖晶石型LiMn2O4结构,该样品经Li2CO3改性后用作锂离子电池正极,于常温和高温下的循环性能均得到明显改善.  相似文献   

7.
锂离子电池正极材料LiMn2O4的低热固相合成与性能表征   总被引:6,自引:0,他引:6  
锂离子电池具有比能量高、环境污染小等优点,广泛应用于手提电话、便携式电脑、摄像机等设备中。其正极材料的研究是锂离子电池的研究重点。层状结构的LiCoO2、LiNiO2和尖晶石结构的LiMn2O4是仅有的三种能在3.5V以上电位可嵌入Li的正极材料[1~3]。目前市售的锂离子电池主要采用LiCoO2作正极材料,但由于Co资源缺乏和价格相对昂贵,而锰资源丰富,价格低廉且无毒,对环境友好,因此世界各国都在大力进行以LiMn2O4为正极材料的锂离子电池的实用化研究。LiMn2O4传统的制备方法是高温固相反应合成法[4~7],但由于Mn的变价多,与Li形成贫Li或…  相似文献   

8.
尖晶石型LiMn2O4电池材料的元素掺杂   总被引:4,自引:0,他引:4  
尖晶石型LiMn2O4正极材料因资源丰富、无毒、安全及制备简单、技术较成熟等优点而成为最具竞争力的新一代商用锂离子二次电池的正极材料之一.由于LiMn2O4的循环稳定性、高温(>55℃)稳定性和大电流放电等因素限制了推广应用.本文从材料的结构组成对锂离子嵌脱过程的作用机理,论述了元素掺杂对尖晶石型LiMn2O4正极材料电化学特性的影响,指出了元素掺杂本体改性锰酸锂正极材料的方法和特点.  相似文献   

9.
锂锰尖晶石LiMn2O4被认为是当前最有前途的锂离子电池的正极材料之一[1];特别在用于动力锂离子电池方面.但是LiMn2O4在充-放电循环过程中会发生严重的容量衰减;而产生容量衰减的主要原因是其结构的不稳定性[2-3]、锰的溶解[4]和John-Teller效应[5].  相似文献   

10.
周华  张海朗 《合成化学》2007,15(B11):55-55
锂锰尖晶石LiMn2O4被认为是当前最有前途的锂离子电池的正极材料之一;特别在用于动力锂离子电池方面。但是LiMn2O4在充一放电循环过程中会发生严重的容量衰减:而产生容量衰减的主要原因是其结构的不稳定性、锰的溶解和John-Teller效应。通过降低材料中的Mn^3+来抑制Jahn-Teller效应的发生,可部分改善LiMn2O4尖晶石的循环性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号