首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new class of phenomena described in this review is based on the interaction between spatially separated, but closely located ferromagnets and superconductors, the so-called ferromagnet–superconductor hybrids (FSH). Typical FSH are: coupled uniform and textured ferromagnetic and superconducting films, magnetic dots over a superconducting film, magnetic nanowires in a superconducting matrix, etc. The interaction is provided by the magnetic field generated by magnetic textures and supercurrents. The magnetic flux from magnetic structures or topological defects can pin vortices or create them, changing the transport properties and transition temperature of the superconductor. On the other hand, the magnetic field from supercurrents (vortices) strongly interacts with the magnetic subsystem, leading to formation of coupled magnetic–superconducting topological defects.

The proximity of ferromagnetic layer dramatically changes the properties of the superconducting film. The exchange field in ferromagnets not only suppresses the Cooper-pair wavefunction, but also leads to its oscillations, which in turn leads to oscillations of observable values: the transition temperature and Josephson current. In particular, in the ground state of the Josephson junction the relative phase of two superconductors separated by a layer of ferromagnetic metal is equal to?π?instead of the usual zero (the so-called π-junction). Such a junction carries a spontaneous supercurrent and possesses other unusual properties. Theory predicts that rotation of magnetization transforms s-pairing into p-pairing. The latter is not suppressed by the exchange field and serves as a carrier of long-range interaction between superconductors.  相似文献   

2.
The effectiveness of magnetic pinning of vortices in a layered system formed by a uniaxial ferromagnet and type II superconductor is considered. It is shown that, irrespective of the saturation magnetization of the ferromagnet, the energy of pinning at the domain structure does not exceed, in order of magnitude, the energy of artificial pinning at a column-type defect. The limitation of pinning energy is caused by the interaction of external vortices with a spontaneous vortex lattice formed in the superconducting film when the magnetization of the ferromagnetic film exceeds the critical value.  相似文献   

3.
The self-consistent interaction of a vortex system of a high-temperature superconductor and ferromagnetic impurities, including single impurities and their clusters, has been considered in the model of a layered high-temperature superconductor. For different temperatures and concentrations of ferromagnetic impurities, the magnetization reversal loops have been calculated by the Monte Carlo method taking into account an ensemble of ferromagnetic particles with different orientations of their easy magnetization axes with respect to the direction of an external magnetic field and for different magnetic anisotropy energies. It has been demonstrated that there is a nonlinear interaction of the high-temperature superconductor with ferromagnetic impurities, in which the initially thermodynamically reversible character of the magnetization reversal of the ferromagnetic ensemble can become irreversible. For a periodic lattice of clusters of ferromagnetic impurities, the magnetization curves of the high-temperature superconductor have been calculated for different sizes and configurations of the clusters. It has been revealed that, when extended defects are oriented parallel to the direction of the entrance of vortices in the sample, the length of the defects does not affect the remanent magnetization. It has been shown that the inclusion of the interaction between the magnetic moments inside the impurity cluster leads to a decrease in the magnetization reversal loop, the coercivity, and, accordingly, the energy loss due to magnetization reversal.  相似文献   

4.
Magnetization reversal modes in a thin-film NiFeCuMo ferromagnet (FM) with periodically varying in-plane anisotropy are studied by the magneto-optical indicator film (MOIF) technique. The uni-directional anisotropy in FM regions exchange-coupled to a FeMn antiferromagnet (AFM) film in the form of square mesh stripes is alternated by the uniaxial anisotropy in the FM regions inside this mesh. It is shown that the boundaries formed along the edges of these stripes, which separate FM regions with different anisotropy, crucially influence the kinetics of domain-structure transformation in both types of FM regions. It is established that the lateral exchange anisotropy in the ferromagnet, which is determined by the stabilization of the spin distribution in the FM layer along the FM-(FM/AFM) interface, leads to the asymmetry of the magnetization reversal in FM regions bordered with an FM/AFM structure. Anisotropy of the mobility of 180-degree “charged” and “uncharged” domain walls situated, respectively, perpendicular and parallel to the unidirectional anisotropy axis is revealed. The difference observed between the mobilities of charged and uncharged domain walls is attributed to the difference in the spin distribution in these walls with respect to the unidirectional anisotropy axis and is a key factor for the difference between the magnetization reversal kinetics in horizontal and vertical exchange-biased FM stripes. Drastic differences are revealed in the asymmetry of magnetization reversal processes in mutually perpendicular narrow stripes of FM/AFM structures. Possible mechanisms of magnetization reversal in low-dimensional FM-(FM/AFM) heterostructures are discussed with regard to the effect of domain walls localized on the edges of AFM layers.  相似文献   

5.
It is found that the magnetization reversal of an array of superthin Co films coupled by the ferromagnetic exchange interaction through the Ag layers may result in a domain structure of an unexpected new type. Due to the incoherent different-sense spin rotation upon lowering the field perpendicular to the easy axis, the specific macrodomains first form in a sample. They are separated not by the Neél domain wall but by a wide transition region containing high-density microdomains of sizes correlating with the grain sizes in the films. Further magnetization reversal proceeds through the formation of standard domain walls in the macrodomain in a magnetostatic field at the plate edge and through their shifting toward the transition region. These processes are explained with taking into account the character of the revealed magnetic anisotropy dispersion.  相似文献   

6.
A new method is developed for numerical simulation of the magnetization of layered superconductors with defects that is based on the Monte Carlo algorithm. The minimization of the free energy functional of a two-dimensional vortex system enables one to obtain equilibrium configurations of vortex density and calculate the magnetization of a superconductor with arbitrary distribution of defects in a wide temperature range. Magnetization curves are obtained for the first time for a defective superconductor under conditions of cyclic variation of the external magnetic field for different temperatures. The magnetic induction profiles and the magnetic flux distribution inside a superconductor are calculated, which support the validity of Bean’s model. It is demonstrated that the process of magnetization reversal is accompanied by the emergence of an annihilation wave, i.e., the motion of a zone with zero magnetic induction at the leading front of the incoming magnetic flux.  相似文献   

7.
The kinetics of magnetization reversal of a thin LSMO film has been studied for the first time. It is shown that the magnetic domain structure critically depends on the conditions of structure formation. In the demagnetized state (after zero-field cooling from T c ), a maze-like domain microstructure with perpendicular magnetization is formed in the film. However, after field cooling and/or saturating magnetization by a field of arbitrary orientation, the [110] direction of spontaneous magnetization in the film plane is stabilized; this pattern corresponds to macrodomains with in-plane magnetization. Further film magnetization reversal (both quasi-static and pulsed) from this state is implemented via nucleation and motion of 180° “head-to-head” domain walls. Upon pulse magnetization reversal, the walls “jump” at a distance proportional to the applied field strength and then undergo thermally activated drift. All dynamic characterisitcs critically depend on the temperature when the latter varies around the room temperature.  相似文献   

8.
Magnetic properties of spatially ordered arrays of interacting nanofilaments have been studied by means of small-angle diffraction of polarized neutrons. Several diffraction maxima or rings that correspond to the scattering of the highly ordered structure of pores/filaments with hexagonal packing have been observed in neutron scattering intensity maps. The interference (nuclear-magnetic) and pure magnetic contributions to the scattering have been analyzed during the magnetic reversal of the nanofilament array in a field applied perpendicular to the nanofilament axis. The average magnetization and the interference contribution proportional to it increase with the field and are saturated at H = H S . The magnetic reversal process occurs almost without hysteresis. The intensity of the magnetic contribution has hysteresis behavior in the magnetic reversal process for both the positive and negative fields that form the field dependence of the intensity in a butterfly shape. It has been shown that this dependence is due to the magnetostatic interaction between the filaments in the field range of HH S . A theory for describing the magnetic properties of the arrays of interacting ferromagnetic nanofilaments in the magnetic field has been proposed.  相似文献   

9.
The results of a micromagnetic simulation of the pinning-depinning processes of a domain wall (DW) in a rectangular ferromagnetic nanowire (NW) consisting of two magnetic layers with scattering fields of two rectangular two-layer nanoparticles (NPs) located on NW opposite sides and oriented perpendicular to its axis are presented. The features of magnetization reversal of this system in the external magnetic field are studied depending on direction of the magnetic moments of the nanoparticle layers. The value of the depinning field in such a system depends essentially on mutual orientation of NP magnetic moments and NW magnetization. The possibility to realize a magnetic logic cell performing the “conjunction” operation of ternary logic is discussed.  相似文献   

10.
Magnetic garnet films grown epitaxially on nonmagnetic garnet substrates exhibit a growth or stress-induced uniaxial anisotropy in addition to the cubic magnetocrystalline anisotropy associated with their crystal symmetry. When the uniaxial anisotropy is dominant over the cubic, such films exhibit stripe or bubble domain structures; even a small cubic anisotropy component can have a decisive effect on the behavior of the domains in applied fields. We report an experimental study of the quadistatic behavior of domains in fields applied to a (111) film in the film plane along (112) and (110). The experimental results are interpreted by a new theory that gives good agreement with the observed behavior, and yields an accurate measurement of the cubic and uniaxial anisotropy constants.The main qualitative features of the results are: In a (110) field, the walls are Neél walls perpendicular to the field. In a (112) field the walls are Bloch walls parallel to the field, the domain magnetization in adjacent stripes is not symmetrical about the film plane, and adjacent stripes are not of equal width; the domain period first shrinks and then expands with increasing field; and even though the applied field has no component perpendicular to the film plane, the film develops a net perpendicular magnetic moment.  相似文献   

11.
In a thin film of superconducting Y Ba2Cu3O7 the impact of surface acoustic waves (SAWs) traveling on the piezoelectric substrate is investigated. A pronounced interaction between the ultrasonic waves and the vortex system in the type II superconductor is observed. The occurrence of a SAW-induced dc voltage perpendicular to the sound path is interpreted as dragging of vortices by the piezoacoustic SAW, which acts as a conveyor for the flux quanta. The antisymmetry of this voltage with respect to the magnetic field directly evidences the induced, directed flux motion. This dynamic manipulation of vortices can be seen as an important step towards flux-based electronic devices.  相似文献   

12.
200-nm-thick Ni films in an epitaxial Cu/Ni/Cu/Si(001) structure are expected to have an in-plane effective magnetic anisotropy. However, the in-plane remanence is only 42%, and magnetic force microscopy domain images suggest perpendicular magnetization. Quantitative magnetic force microscopy analysis can resolve the inconsistencies and show that (i) the films have perpendicular domains capped by closure domains with magnetization canted at 51 degrees from the film normal, (ii) the magnetization in the Bloch domain walls between the perpendicular domains accounts for the low in-plane remanence, and (iii) the perpendicular magnetization process requires a short-range domain wall motion prior to wall-magnetization rotation and is nonhysteretic, whereas the in-plane magnetization requires long-range motion before domain-magnetization rotation and is hysteretic.  相似文献   

13.
The phase diagram and the single-domain uniform state for a uniaxial ferromagnetic film with the superconducting layers covering one or both sides of a ferromagnet are investigated. The superconductor is supposed to be a second-order one and the interaction between the magnetic sub-system and with the conductivity electrons in a superconductor is purely electromagnetic and the vortices in a superconductor are pinned. The critical thickness of the magnetic film for which the uniform state becomes absolutely stable is calculated when the external magnetic field is supposed to be in-plane of the film. It is shown that the critical thickness of the film from the magnetic material with the quality factor Q>1 monotonically decreases as the magnetic field increases in the range from zero value to the value of the transition field where the collinear phase transforms into the angular (canted) phase. Further the critical thickness increases with the increase of the field. The quasi-single-domain magnetic film states were considered when the film thickness was close to the critical one. It is shown that for a thin isolated magnetic film the domain period exponentially increases with the decrease of the film thickness. Such dependence, however for the film with double-side superconducting cover and close to the transition into the single domain state becomes logarithmic and for the film covered by superconductor only on the one side varies as the power series. The single-domain state existence and the asymptotic behaviour of the domain structure is explained by the features of the asymptotic behaviour of the domain walls within the system. As for isolated magnetic film and for a film with the superconductor cover layers the transition from the collinear phase to the inhomogeneous state is the second-order phase transition and the transition from the uniform angular phase to the inhomogeneous phase is the first-order transition.  相似文献   

14.
We present direct imaging of magnetic flux structures over the ab face of the anisotropic, spin-triplet superconductor Sr2RuO4 using a scanning microSQUID force microscope. Individual vortices with a single flux quantum were observed at low magnetic fields applied along the out-of-pane direction. At intermediate fields, the direct imaging revealed coalescing of vortices and the formation of flux domains. Our observations imply the existence of a mechanism in this material for bringing vortices together overcoming the conventional repulsive vortex-vortex interaction.  相似文献   

15.
The influence of antiferromagnetic order on the mixed state of a superconductor may result in creation of spin-flop domains along vortices. This may happen when an external magnetic field is strong enough to flip over magnetic moments in the vortex core from their ground state configuration. The formation of domain structure causes modification of the surface energy barrier, and creation of the new state in which magnetic flux density is independent of the applied field. The modified surface energy barrier has been calculated for parameters of the antiferromagnetic superconductor DyMo6S8. The prediction of two-step flux penetration process has been verified by precise magnetization measurements performed on the single crystal of DyMo6S8 at milikelvin temperatures. A characteristic plateau on the virgin curve B(H 0) has been found and attributed to the modified surface energy barrier. The end of the plateau determines the critical field, which we call the second critical field for flux penetration. Received 16 August 2002 / Received in final form 22 October 2002 Published online 29 November 2002  相似文献   

16.
Antidots of size 0.5 μm are prepared by patterning iron-nickel films with a focused ion beam. The magnetization distribution in antidot arrays is examined with Lorentz transmission electron microscopy. It is shown that one side of the array makes an angle of about 20° with the easy magnetic axis of the film. Magnetization reversal in the direction close to the easy magnetic axis starts with domain nucleation at the antidot edges that are perpendicular to the applied field and adjacent to the unpatterned region of the film, and propagates as the domain walls move. Magnetization reversal in the direction close to the hard magnetic axis starts with magnetization rotation outside the patterned region at the antidot edges and propagates as the domain walls execute a complicated motion. It is demonstrated that some areas between the edges of adjacent antidots can carry information bits. Results obtained are explained in terms of competition between the demagnetizing energy, energy of internal anisotropy, and misorientation effect. The feasibility of such structures as high-density storage elements is discussed.  相似文献   

17.
Low-pressure room-temperature neon, argon, krypton, and air plasmas were studied in magnetic fields up to flux densities of 2.3 T. Filaments appeared parallel to the magnetic field lines, and patterns such as spirals and concentric circles formed in the perpendicular direction. We link these effects to the magnetization of the ions. We also used a layer of embedded microparticles as probes in the plasma. Their motion changed dramatically from a collective rotation of the whole ensemble in moderate magnetic fields to a rotation in several small vortices centered at the filaments.  相似文献   

18.
Co/Pt multilayers with perpendicular magnetic anisotropy exhibit an exchange bias when covered with an IrMn layer. The exchange bias field, which is about 7 mT for 3 Co/Pt bilayer repetitions and a Co layer thickness of 5 Å, can be increased up to 16.5 mT by the insertion of a thin Pt layer at the Co/IrMn interface. The interfacial magnetic anisotropy of the Co/IrMn interface (KSCo/IrMn =-0.09 mJ/m2) favours in-plane magnetization and tends to tilt the Co spins away from the film normal. Dynamical measurements of the magnetization reversal process reveal that both thermally activated spin reversal in the IrMn layer and domain wall nucleation in the Co/Pt multilayer influence the interfacial spin structure and therefore the strength of the perpendicular exchange bias field.  相似文献   

19.
《Physica B: Condensed Matter》2000,275(1-3):270-273
The uniaxial anisotropy of independent single domain ferromagnetic grains in high density CoCrPtTa longitudinal recording media was derived from remanence measurements. The distribution of the uniaxial anisotropy axis directions was estimated from a measurement of the Kerr rotation in a perpendicular field. The dispersion of anisotropy fields was estimated from the remanence measurements after application of pulse fields in the film plane. Application of an external field to 45° from the film plane results in sharp magnetization reversal with a minimum writing field.  相似文献   

20.
Abstract

The phenomenological theory of superconductors with a many-component order parameter (OP) is developed. On the basis of a generalized Ginzburg-Landau functional, equations for a two-component-OP superconductor are derived. It is shown that such a superconductor is specified by three length dimensionality parameters—penetration depth λ, correlation length ζ, and width d of the boundary between two superconducting-phase domains. With λ ? d ? ζ, the equations for the OP of a superconductor in a magnetic field can be explored analytically. The transition from the superconducting to the mixed phase may occur not only by the formation of ordinary Abrikosov vortices, but also owing to vortices that have two cores, each transferring a half-integral flux quantum. The total flux transferred by a vortex certainly constitutes an integral quantum. The cores of such a dimer are interconnected by two domain walls, which exercise confinement within the dimer. The distance between the cores in the dimer is of the order of d. Within a domain wall that separates two superconducting-phase domains, a dimer may fall apart into two vortices with a half-integral flux quantum.

For many-component-OP superconductors in a magnetic field, vortex structures of a more complicated nature than a dimer may occur. An individual core may transfer a fractional flux quantum, but the structure as a whole transfers an integral flux quantum. Confinement of individual cores occurs owing to a complicated system of domain walls determined by the topological charges of these vortices.

Under certain conditions, on attaining field H c1, vortices may arise first in the domain walls, carrying a fractional flux quantum, and then within the superconducting domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号