首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The laminar fully developed nanofluid flow and heat transfer in a horizonal channel are investigated. Highly accurate solutions for the temperature and nanoparticle concentration distributions are obtained. The effects of the Brownian motion parameter N b, the thermophoresis parameter N t, and the Lewis number Le on the temperature and nanoparticle concentration distributions are discussed. The current analysis shows that the nanoparticles can improve the heat transfer characteristics significantly for this flow problem.  相似文献   

2.
The present analysis discusses the peristaltic flow of a nanofluid in a diverging tube. This is the first article on the peristaltic flow in nanofluids. The governing equations for nanofluid are modelled in cylindrical coordinates system. The flow is investigated in a wave frame of reference moving with velocity of the wave c. Temperature and nanoparticle equations are coupled so Homotopy perturbation method is used to calculate the solutions of temperature and nanoparticle equations, while exact solutions have been calculated for velocity profile and pressure gradient. The solution depends on Brownian motion number N b , thermophoresis number N t , local temperature Grashof number B r and local nanoparticle Grashof number G r . The effects of various emerging parameters are investigated for five different peristaltic waves. It is observed that the pressure rise decreases with the increase in thermophoresis number N t . Increase in the Brownian motion parameter N b and the thermophoresis parameter N t temperature profile increases. Streamlines have been plotted at the end of the article.  相似文献   

3.
A boundary layer analysis is presented for the natural convection past an isothermal sphere in a Darcy porous medium saturated with a nanofluid. Numerical results for friction factor, surface heat transfer rate, and mass transfer rate have been presented for parametric variations of the buoyancy ratio parameter N r, Brownian motion parameter N b, thermophoresis parameter N t, and Lewis number L e. The dependency of the friction factor, surface heat transfer rate (Nusselt number), and mass transfer rate (Sherwood number) on these parameters has been discussed.  相似文献   

4.
The numerical analysis of heat transfer of laminar nanofluid flow over a fiat stretching sheet is presented. Two sets of boundary conditions (BCs) axe analyzed, i.e., a constant (Case 1) and a linear streamwise variation of nanopaxticle volume fraction and wall temperature (Case 2). The governing equations and BCs axe reduced to a set of nonlinear ordinary differential equations (ODEs) and the corresponding BCs, respectively. The dependencies of solutions on Prandtl number Pr, Lewis number Le, Brownian motion number Nb, and thermophoresis number Nt are studied in detail. The results show that the reduced Nusselt number and the reduced Sherwood number increase for the BCs of Case 2 compared with Case 1. The increases of Nb, Nt, and Le numbers cause a decrease of the reduced Nusselt number, while the reduced Sherwood number increases with the increase of Nb and Le numbers. For low Prandtl numbers, an increase of Nt number can cause to decrease in the reduced Sherwood number, while it increases for high Prandtl numbers.  相似文献   

5.
The aim of the present paper is to analyze the natural convection heat and mass transfer of nanofluids over a vertical plate embedded in a saturated Darcy porous medium subjected to surface heat and nanoparticle fluxes. To carry out the numerical solution, two steps are performed. The governing partial differential equations are firstly simplified into a set of highly coupled nonlinear ordinary differential equations by appropriate similarity variables, and then numerically solved by the finite difference method. The obtained similarity solution depends on four non-dimensional parameters, i.e., the Brownian motion parameter (N b), the Buoyancy ratio (N r), the thermophoresis parameter (N t), and the Lewis number (Le). The variations of the reduced Nusselt number and the reduced Sherwood number with N b and N t for various values of Le and N r are discussed in detail. Simulation results depict that the increase in N b, N t, or N r decreases the reduced Nusselt number. An increase in the Lewis number increases both of the reduced Nusselt number and the Sherwood number. The results also reveal that the nanoparticle concentration boundary layer thickness is much thinner than those of the thermal and hydrodynamic boundary layers.  相似文献   

6.
A steady two-dimensional magnetohydrodynamic stagnation-point flow of an electrically conducting fluid and heat transfer with thermal radiation of a nanofluid past a shrinking and stretching sheet is investigated numerically. The model used for the nanofluid incorporates the effects of the Brownian motion and thermophoresis. A similarity transformation is used to convert the governing nonlinear boundary-layer equations into coupled higher-order nonlinear ordinary differential equations. The result shows that the velocity, temperature, and concentration profiles are significantly influenced by the Brownian motion, heat radiation, and thermophoresis particle deposition.  相似文献   

7.
A boundary layer analysis was presented to study the non-Darcy-free convection of a power-law fluid over a non-isothermal two-dimensional body embedded in a porous medium. The Ostwald-de Waele power-law model was used to characterize the non-Newtonian fluid behavior. Similarity solutions were obtained with variations in surface temperature or surface heat flux. In view of the fact that most of the non-Newtonian fluids have large Prandtl numbers, this study was directed toward such fluids. The effects of the porous medium parameters, k 1 and k 2, body shape parameter, m, and surface thermal variations parameter, p, as well as the power-law index, n, were examined.  相似文献   

8.
The effect of vertical throughflow on the onset of convection in a horizontal layer of a porous medium saturated by a nanofluid is studied analytically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The dependences of the critical Rayleigh number for the non-oscillatory and oscillatory modes of instability on the thermophoresis and Brownian motion parameters for the cases with and without throughflow are investigated.  相似文献   

9.
The present paper deals with the multiple solutions and their stability analysis of non-Newtonian micropolar nanofluid slip flow past a shrinking sheet in the presence of a passively controlled nanoparticle boundary condition. The Lie group transformation is used to find the similarity transformations which transform the governing transport equations to a system of coupled ordinary differential equations with boundary conditions. These coupled set of ordinary differential equation is then solved using the RungeKutta-Fehlberg fourth-fifth order(RKF45) method and the ode15 s solver in MATLAB.For stability analysis, the eigenvalue problem is solved to check the physically realizable solution. The upper branch is found to be stable, whereas the lower branch is unstable. The critical values(turning points) for suction(0 sc s) and the shrinking parameter(χc χ 0) are also shown graphically for both no-slip and multiple-slip conditions. Multiple regression analysis for the stable solution is carried out to investigate the impact of various pertinent parameters on heat transfer rates. The Nusselt number is found to be a decreasing function of the thermophoresis and Brownian motion parameters.  相似文献   

10.
Heat transfer characteristics of a two-dimensional steady hydromagnetic natural convection flow of nanofluids over a non-linear stretching sheet taking into account the effects of radiation and convective boundary condition has been investigated numerically. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The local similarity solutions are obtained by using very robust computer algebra software Maple 13. The results corresponding to the dimensionless temperature profiles and the reduced Nusselt number, Sherwood number and skin friction coefficient are displayed graphically for various pertinent parameters. The results show that temperature within the boundary layer is enhanced with the increase of the Biot number, buoyancy due to nanoparticle concentration, strength of the applied magnetic field, Brownian motion parameter, and thermophoresis parameter. An opposite trend is observed for the increase of the buoyancy due to temperature, stretching index, and the radiation parameter. The results also show that the local rate of heat transfer strongly depends on the nonlinear stretching index, radiation parameter, Biot number, Brownian motion parameter, and thermophoresis parameter.  相似文献   

11.
The steady laminar incompressible free convective flow of a nanofluid over a permeable upward facing horizontal plate located in porous medium taking into account the thermal convective boundary condition is studied numerically. The nanofluid model used involves the effect of Brownian motion and the thermophoresis. Using similarity transformations the continuity, the momentum, the energy, and the nanoparticle volume fraction equations are transformed into a set of coupled similarity equations, before being solved numerically, by an implicit finite difference numerical method. Our analysis reveals that for a true similarity solution, the convective heat transfer coefficient related with the hot fluid and the mass transfer velocity must be proportional to x −2/3, where x is the horizontal distance along the plate from the origin. Effects of the various parameters on the dimensionless longitudinal velocity, the temperature, the nanoparticle volume fraction, as well as on the rate of heat transfer and the rate of nanoparticle volume fraction have been presented graphically and discussed. It is found that Lewis number, the Brownian motion, and the convective heat transfer parameters increase the heat transfer rate whilst the thermophoresis decreases the heat transfer rate. It is also found that Lewis number and the convective heat transfer parameter enhance the nanoparticle volume fraction rate whilst the thermophoresis parameter decreases nanoparticle volume fraction rate. A very good agreement is found between numerical results of the present article for special case and published results. This close agreement supports the validity of our analysis and the accuracy of the numerical computations.  相似文献   

12.
This article is devoted to combined convection heat transfer of nanofluids through a vertical channel filled with a homogeneous and isotropic porous medium. The flow is assumed to be fully developed and the “Brinkman extended Darcy” model is used for the flow in the porous media and “clear compatible” viscous dissipation model is considered. Also the model utilized for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing momentum, energy, and nanopartices volume fraction equations are solved both analytically and numerically. The effects of the influential dimensionless parameters such as Brownian and thermophoresis parameters, mixed convection parameter (Gr/Re), Brinkman, Darcy and Lewis numbers on dimensionless velocity and temperature distributions and pressure drop are studied. Also, the results of the Nusselt number for the both left and right walls are presented and discussed.  相似文献   

13.
The onset of convection in a horizontal layer of a porous medium saturated with a viscoelastic nanofluid was studied in this article. The modified Darcy model was applied to simulate the momentum equation in porous media. An Oldroyd-B type constitutive equation was used to describe the rheological behavior of viscoelastic nanofluids. The model used for the viscoelastic nanofluid incorporates the effects of Brownian motion and thermophoresis. The onset criterion for stationary and oscillatory convection was analytically derived. The effects of the concentration Rayleigh number, Prandtl number, Lewis number, capacity ratio, relaxation, and retardation parameters on the stability of the system were investigated. Oscillatory instability is possible in both bottom- and top-heavy nanoparticle distributions. Results indicated that there is competition among the processes of thermophoresis, Brownian diffusion, and viscoelasticity that causes the convection to set in through oscillatory rather than stationary modes. Regimes of stationary and oscillatory convection for various parameters were derived and are discussed in detail.  相似文献   

14.
Thermal conduction which happens in all phases(liquid,solid,and gas) is the transportation of internal energy through minuscule collisions of particles and movement of electrons within a working body.The colliding particles comprise electrons,molecules,and atoms,and transfer disorganized microscopic potential and kinetic energy,mutually known as the internal energy.In engineering sciences,heat transfer comprises the processes of convection,thermal radiation,and sometimes mass transportation.Typically,more than one of these procedures may happen in a given circumstance.We use the Cattaneo-Christov(CC) heat flux model instead of the Fourier law of heat conduction to discuss the behavior of heat transportation.A mathematical model is presented for the Cattaneo-Christov double diffusion(CCDD) in the flow of a non-Newtonian nanofluid(the Jeffrey fluid) towards a stretched surface.The magnetohydrodynamic(MHD) fluid is considered.The behaviors of heat and mass transportation rates are discussed with the CCDD.These models are based on Fourier's and Fick's laws.The convective transportation in nanofluids is discussed,subject to thermophoresis and Brownian diffusions.The nonlinear governing flow expression is first altered into ordinary differential equations via appropriate transformations,and then numerical solutions are obtained through the built-in-shooting method.The impact of sundry flow parameters is discussed on the velocity,the skin friction coefficient,the temperature,and the concentration graphically.It is reported that the velocity of material particles decreases with higher values of the Deborah number and the ratio of the relaxation to retardation time parameter.The temperature distribution enhances when the Brownian motion and thermophoresis parameters increase.The concentration shows contrasting impact versus the Lewis number and the Brownian motion parameter.It is also noticed that the skin friction coefficient decreases when the ratio of the relaxation to retardation time parameter increases.  相似文献   

15.
The non-Darcy flow characteristics of power-law non-Newtonian fluids past a wedge embedded in a porous medium have been studied. The governing equations are converted to a system of first-order ordinary differential equations by means of a local similarity transformation and have been solved numerically, for a number of parameter combinations of wedge angle parameter m, power-law index of the non-Newtonian fluids n, first-order resistance A and second-order resistance B, using a fourth-order Runge–Kutta integration scheme with the Newton–Raphson shooting method. Velocity and shear stress at the body surface are presented for a range of the above parameters. These results are also compared with the corresponding flow problems for a Newtonian fluid. Numerical results show that for the case of the constant wedge angle and material parameter A, the local skin friction coefficient is lower for a dilatant fluid as compared with the pseudo-plastic or Newtonian fluids.  相似文献   

16.
An analysis is performed to study unsteady free convective boundary layer flow of a nanofluid over a vertical cylinder. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing equations are formulated and a numerical solution is obtained by using an explicit finite-difference scheme of the Crank-Nicolson type. The solutions at each time step have been found to reach the steady state solution properly. Numerical results for the steady-state velocity, temperature and nanoparticles volume fraction profiles as well as the axial distributions and the time histories of the skin-friction coefficient, Nusselt number and the Sherwood number are presented graphically and discussed.  相似文献   

17.
The behavior of an incompressible laminar boundary layer flow over a wedge in a nanofluid with suction or injection has been investigated. The model used for the nanofluid integrates the effects of the Brownian motion and thermophoresis parameters. The governing partial differential equations of this problem, subjected to their boundary conditions, are solved by the Runge-Kutta-Gill technique with the shooting method for finding the skin friction and the rate of heat and mass transfer. The result are presented in the form of velocity, temperature, and volume fraction profiles for different values of the suction/injection parameter, Brownian motion parameter, thermophoresis parameter, pressure gradient parameter, Prandtl number, and Lewis number. The conclusion is drawn that these parameters significantly affect the temperature and volume fraction profiles, but their influence on the velocity profile is comparatively smaller.  相似文献   

18.
Time-dependent, two-dimensional(2 D) magnetohydrodynamic(MHD)micropolar nanomaterial flow over a shrinking/stretching surface near the stagnant point is considered. Mass and heat transfer characteristics are incorporated in the problem. A model of the partial differential expressions is altered into the forms of the ordinary differential equations via similarity transformations. The obtained equations are numerically solved by a shooting scheme in the MAPLE software. Dual solutions are observed at different values of the specified physical parameters. The stability of first and second solutions is examined through the stability analysis process. This analysis interprets that the first solution is stabilized and physically feasible while the second one is un-stable and not feasible. Furthermore, the natures of various physical factors on the drag force, skin-friction factor, and rate of mass and heat transfer are determined and interpreted. The micropolar nanofluid velocity declines with a rise in the suction and magnetic parameters, whereas it increases by increasing the unsteadiness parameter.The temperature of the micropolar nanofluid rises with increase in the Brownian motion,radiation, thermophoresis, unsteady and magnetic parameters, but it decreases against an increment in the thermal slip constraint and Prandtl number. The concentration of nanoparticles reduces against the augmented Schmidt number and Brownian movement values but rises for incremented thermophoresis parameter values.  相似文献   

19.
In this article we derive semi-analytical/numerical solutions for transport phenomena (momentum, heat and mass transfer) in a nanofluid regime adjacent to a nonlinearly porous stretching sheet by means of the Homotopy analysis method (HAM). The governing equations are reduced to a nonlinear, coupled, non-similar, ordinary differential equation system via appropriate similarity transformations. This system is solved under physically realistic boundary conditions to compute stream function, velocity, temperature and concentration function distributions. The results of the present study are compared with numerical quadrature solutions employing a shooting technique with excellent correlation. Furthermore the current HAM solutions demonstrate very good correlation with the non-transpiring finite element solutions of Rana and Bhargava (Commun. Nonlinear Sci. Numer. Simul. 17:212–226, 2012). The influence of stretching parameter, transpiration (wall suction/injection) Prandtl number, Brownian motion parameter, thermophoresis parameter and Lewis number on velocity, temperature and concentration functions is illustrated graphically. Transpiration is shown to exert a substantial influence on flow characteristics. Applications of the study include industrial nanotechnological fabrication processes.  相似文献   

20.
 Heat transfer characteristics of a non-Newtonian fluid on a power-law stretched surface of variable temperature with suction or injection were investigated. Similarity solutions of the laminar boundary layer equations describing heat transfer and fluid flow in a quiescent fluid were obtained and solved numerically. Velocity and temperature profiles as well as the Nusselt number, Nu, were studied for two thermal boundary conditions; uniform surface temperature and variable surface temperature, for different parameters; Prandtl number Pr, temperature exponent b, velocity exponent m, injection parameter d and power-law index n. It was found that decreasing injection parameter d, and power-law index n and increasing Prandtl number Pr and surface temperature exponent b enhance the heat transfer coefficient. Received on 27 April 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号