首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neutron reflectivity experiments conducted on self-assembled monolayers (SAMs) against polar (water) and nonpolar (organic) liquid phases reveal further evidence for a density reduction at hydrophobic-hydrophilic interfaces. The density depletion is found at the interface between hydrophobic dodecanethiol (C12) and hexadecanethiol (C16) SAMs and water and also between hydrophilic SAMs (C12/C11OH) and nonpolar fluids. The results show that the density deficit of a fluid in the boundary layer is not unique to aqueous solid-liquid interfaces but is more general and correlated with the affinity of the liquid to the solid surface. In water the variation of pH has only minor influence, while different electrolytes taken from the Hofmeister series seem to increase the depletion. On hydrophobic SAMs an increase in density depletion with temperature was observed, in agreement with Monte Carlo simulations performed on corresponding model systems. The increase in the water density depletion layer is governed by two effects: the surface energy difference between water and the substrate and the chemical potential of the aqueous phase.  相似文献   

2.
Specular neutron reflectivity has been used to investigate the adsorption of the aromatic counterions hydroxybenzoate and chlorobenzoate at the hexadecyl trimethylammonium bromide surfactant monolayer/water interface. The degree of counterion binding and the location of the counterions at the interface are shown to depend on the isomeric form of the counterion. For hydroxybenzoate, the para-substituted counterion is located within the headgroup region of the surfactant monolayer, and there is of order one counterion for every two surfactant ions. For the ortho-substituted counterion, the degree of counterion binding is higher. There is of order 0.85 counterions for each surfactant ion, and the counterion is located within the hydrophobic region of the monolayer, some 5 A from the center of the headgroup distribution. Similar results were found for the chlorobenzoate counterion, but in that case it was the para-substituted counterion that was more tightly bound and located within the hydrophobic region of the surfactant monolayer. The results for the ortho-substituted hydroxybenzoate and for the para-substituted chlorobenzoate are consistent with those previously reported for the para-tosylate. The results are discussed in the context of the ability of the specific aromatic counterion isomer to promote massive micellar growth, and the results shed light on that mechanism.  相似文献   

3.
The adsorption of amyloid beta-peptide at hydrophilic and hydrophobic modified silicon-liquid interfaces was characterized by neutron reflectometry. Distinct polymeric films were used to obtain noncharged (Formvar), negatively (sodium poly(styrene sulfonate)) and positively charged (poly(allylamine hydrochloride)) hydrophilic as well as hydrophobic surfaces (polystyrene and a polysiloxane-dodecanoic acid complex). Amyloid beta-peptide was found to adsorb at positively charged hydrophilic and hydrophobic surfaces, whereas no adsorbed layer was detected on hydrophilic noncharged and negatively charged films. The peptide adsorbed at the positively charged film as patches, which were dispersed on the surface, whereas a uniform layer was observed at hydrophobic surfaces. The thickness of the adsorbed peptide layer was estimated to be approximately 20 A. The peptide formed a tightly packed layer, which did not contain water. These studies provide information about the affinity of the amyloid beta-peptide to different substrates in aqueous solution and suggest that the amyloid fibril formation may be driven by interactions with surfaces.  相似文献   

4.
Nanodiscs are self-assembled nanostructures composed of a belt protein and a small patch of lipid bilayer, which can solubilize membrane proteins in a lipid bilayer environment. We present a method for the alignment of a well-defined two-dimensional layer of nanodiscs at the air-water interface by careful design of an insoluble surfactant monolayer at the surface. We used neutron reflectivity to demonstrate the feasibility of this approach and to elucidate the structure of the nanodisc layer. The proof of concept is hereby presented with the use of nanodiscs composed of a mixture of two different lipid (DMPC and DMPG) types to obtain a net overall negative charge of the nanodiscs. We find that the nanodisc layer has a thickness or 40.9 ± 2.6 ? with a surface coverage of 66 ± 4%. This layer is located about 15 ? below a cationic surfactant layer at the air-water interface. The high level of organization within the nanodiscs layer is reflected by a low interfacial roughness (~4.5 ?) found. The use of the nanodisc as a biomimetic model of the cell membrane allows for studies of single membrane proteins isolated in a confined lipid environment. The 2D alignment of nanodiscs could therefore enable studies of high-density layers containing membrane proteins that, in contrast to membrane proteins reconstituted in a continuous lipid bilayer, remain isolated from influences of neighboring membrane proteins within the layer.  相似文献   

5.
Measurements of the advancing contact angles for aqueous solutions of sodium dodecyl sulfate (SDDS) or sodium hexadecyl sulfonate (SHS) in mixtures with methanol, ethanol, or propanol on a quartz surface were carried out. On the basis of the obtained results and Young and Gibbs equations the critical surface tension of quartz wetting, the composition of the surface layer at the quartz-water interface, and the activity coefficients of the anionic surfactants and alcohols in this layer as well as the work of adhesion of aqueous solutions of anionic surfactant and alcohol mixtures to the quartz surface were determined. The analysis of the contact angle data showed that the wettability of quartz changed visibly only in the range of alcohol and anionic surfactant concentration at which these surface-active agents were present in the solution in the monomeric form. The analysis also showed that there was a linear dependence between the adhesion and the surface tension of aqueous solutions of anionic surfactant and alcohol mixtures. This dependence can be described by linear equations for which the constants depend on the anionic surfactant and alcohol concentrations. The slope of all linear dependence between adhesion and surface tension was positive. The critical surface tension of quartz wetting determined from this dependence by extrapolating the adhesion tension to the value equal to the surface tension (for contact angle equal zero) depends on the assumption whether the concentration of anionic surfactant or alcohol was constant. Its average value is equal to 29.95mN/m and it is considerably lower than the quartz surface tension. The positive slope of the adhesion-surface tension curves was explained by the possibility of the presence of liquid vapor film beyond the solution drop which settled on the quartz surface and the adsorption of surface-active agents at the quartz/monolayer water film-water interface. This conclusion was confirmed by the work of adhesion of aqueous solutions of anionic surfactants and short-chain alcohol mixtures to the quartz surface determined on the basis of the contact angle data and molar fraction of anionic surfactants and alcohols and their activity coefficient in the surface layer.  相似文献   

6.
Interfacial structures of water at polyvinyl alcohol (PVA) and poly(2-acrylamido-2-methypropane) sulfonic acid sodium salt (PNaAMPS)/quartz interfaces were investigated by sum frequency generation (SFG) spectroscopy. Two broad peaks were observed in OH stretching region at 3200 and 3400 cm(-1), corresponding to the symmetric OH stretching of tetrahedrally coordinated, i.e., strongly hydrogen bonded "ice-like" water, and the asymmetric OH stretching of water in a more random arrangement, i.e., weakly hydrogen bonded "liquid-like" water, respectively, in both cases. The "liquid-like" water became dominant when the PVA gel was pressed against the quartz surface. The relative intensity of the SFG signal due to the "liquid-like" water to that due to the "ice-like water" at the quartz surface modified with a self-assembled monolayer of aminopropyltrimethoxysilane (APS) became higher when the negatively charged PNaMPS gel was contacted to the APS modified quartz surface in a solution of pH = 12, where the surface was negatively charged and electrostatic repulsive interaction and low friction were present between the PNaMPS gel and the APS modified surface. It, however, did not change in a solution of pH = 2, where the surface was positively charged and electrostatic attractive interaction and very high friction were present between the PNaMPS gel and the APS modified surface. These results suggest the important role of water structure for small friction at the polymer gel/solid interface.  相似文献   

7.
The adsorption of DNA on chemically homogeneous, functionalized, oxide-free single-crystal silicon surfaces is studied by x-ray reflectivity. The adsorption of monodisperse, 294 base-pair double-stranded DNA on a positively charged surface is detected through the deformation of the molecular monolayer of aminated alkyl-chain molecules covalently bonded to the surface. The adsorption of single-stranded DNA does not lead to the same deformation. A detailed quantitative characterization of the density profiles yield surface densities of the covalently grafted, molecular monolayers that are in excellent agreement with infrared spectroscopic measurements. The additional mass density that is measured following the adsorption of DNA corresponds either to the partial embedding of a densely-packed adsorbed layer or to a deeper penetration into the soft surface layer at a lower surface density of the adsorbed double-stranded DNA molecules. The adsorption is found to be irreversible under high added salt concentrations, suggesting a partial dehydration of the double-stranded DNA.  相似文献   

8.
Globular proteins at solid/liquid interfaces   总被引:4,自引:0,他引:4  
Seven years have passed since one of us (W.N.) published the last comprehensive review on the mechanism of globular protein adsorption to solid/water interfaces. Since that time, annual contributions to the field have steadily increased and substantial progress has been made in a number of important areas. This review takes a fresh look at the driving force for protein adsorption by combining recent advances with key results from the past. The analysis indicates that four effects, namely structural rearrangements in the protein molecule, dehydration of (parts of) the sorbent surface, redistribution of charged groups in the interfacial layer, and protein surface polarity usually make the primary contributions to the overall adsorption behavior.  相似文献   

9.
Conformational orientations of a mouse monoclonal antibody to the beta unit of human chorionic gonadotrophin (anti-beta-hCG) at the hydrophilic silicon oxide/water interface were investigated using atomic force microscopy (AFM) and neutron reflectivity (NR). The surface structural characterization was conducted with the antibody concentration in solution ranging from 2 to 50 mg.L(-1) with the ionic strength kept at 20 mM and pH = 7.0. It was found that the antibody adopted a predominantly "flat-on" orientation, with the Fc and two Fab fragments lying flat on the surface. The AFM measurement revealed a thickness of 30-33 A of the layer formed in contact with 2 mg.L(-1) antibody in water, but, interestingly, the flat-on antibody molecules formed small nonuniform clusters equivalent to 2-15 antibody molecules. Parallel AFM scanning in air revealed even larger surface clusters, suggesting that surface drying induced further aggregation. The AFM study thus demonstrated that the interaction between protein and the hydrophilic surface is weak and indicated that surface aggregation can be driven by the attraction between neighboring protein molecules. NR measurements at the solid/water interface confirmed the flat-on layer orientation of adsorbed molecules over the entire concentration range studied. Thus, at 2 mg.L(-1), the adsorbed antibody layer was well represented by a uniform layer with a thickness of 40 A. This value is thicker than the 30-33 A observed from AFM, suggesting possible layer compression caused by the tip tapping. An increase in the antibody concentration to 10 mg.L(-1) led to increasing surface adsorption. The corresponding layer structure was well represented by a three-layer model consisting of an inner sublayer of 10 A, a middle sublayer of 30 A, and an outer sublayer of 25 A, with the protein volume fractions in each sublayer being 0.22, 0.42, and 0.10, respectively. The structural transition can be interpreted as a twisting and tilting of segments of the adsorbed molecules, driven by an electrostatic repulsion between them that increases with the surface packing density. Hindrance of antigen access to antibody binding sites, resulting from the change in surface packing, can account for the decrease in antigen binding capacity (AgBC) with increasing surface density of the antibody that is observed.  相似文献   

10.
Based on earlier reported surface rheological behaviour two factors appeared to be important for the functional behaviour of mixed protein/polysaccharide adsorbed layers at air/water interfaces: (1) protein/polysaccharide mixing ratio and (2) formation history of the layers. In this study complexes of beta-lactoglobulin (positively charged at pH 4.5) and low methoxyl pectin (negatively charged) were formed at two mixing ratios, resulting in negatively charged and nearly neutral complexes. Neutron reflection showed that adsorption of negative complexes leads to more diffuse layers at the air/water interface than adsorption of neutral complexes. Besides (simultaneous) adsorption of protein/polysaccharide complexes, a mixed layer can also be formed by adsorption of (protein/)polysaccharide (complexes) to a pre-formed protein layer (sequential adsorption). Despite similar bulk concentrations, adsorbed layer density profiles of simultaneously and sequentially formed layers were persistently different, as illustrated by neutron reflection analysis. Time resolved fluorescence anisotropy showed that the mobility of protein molecules at an air/water interface is hampered by the presence of pectin. This hampered mobility of protein through a complex layer could account for differences observed in density profiles of simultaneously and sequentially formed layers. These insights substantiated the previously proposed organisations of the different adsorbed layers based on surface rheological data.  相似文献   

11.
《Colloids and Surfaces》1982,4(3):213-227
The adsorption of phenol and three commonly used frothers, namely, terpineol, methylisobutylcarbinol (MIBC) and cresol, on coal surfaces has been studied through UV spectrophotometric and gas chromatographic techniques. The rate of attaining adsorption equilibrium of these alcohols onto coal is very slow, possibly due to pore diffusion. The adsorption isotherms are of typical Langmuir-type except for MIBC, where the adsorption density rises linearly with equilibrium concentration in solution in the range of concentration under study. Free energies of adsorption were calculated from the adsorption isotherms. The results indicate that adsorption occurs through hydrophobic interactions between the frother molecules and the coal surface. The effect of oxidation and pH on adsorption behavior was also studied. Oxidized coal is more hydrophilic and hence the adsorption of these nonionic surface-active agents is reduced after oxidation.  相似文献   

12.
Though the local dielectric constant at interfaces is an important phenomenological parameter in the analysis of surface spectroscopy, its microscopic definition has been uncertain. Here, we present a full molecular theory on the local field at interfaces with the help of molecular dynamics simulation, and thereby provide microscopic basis for the local dielectric constant so as to be consistent to the phenomenological three-layer model of interface systems. To demonstrate its performance, we applied the theory to the water/vapor interface, and obtained the local field properties near the interface where the simple dielectric model breaks down. Some computational issues pertinent to Ewald calculations of the dielectric properties are also discussed.  相似文献   

13.
The rates of electron transfer (ET) reactions at the water/ionic liquid (IL) interface have been measured for the first time using scanning electrochemical microscopy. The standard bimolecular rate constant of the interfacial ET between ferrocene dissolved in 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and aqueous ferricyanide (0.4 M-1 cm s-1) was found to be approximately 30 times higher than the corresponding rate constant measured at the water/1,2-dichloroethane interface. The driving force dependence of the ET rate was investigated over a wide range of the interfacial potential drop values (>200 mV). The observed Butler-Volmer-type dependence is discussed in terms of the interfacial model. The ET was also probed at the interface between aqueous solution and the mixture of the IL and 1,2-dichloroethane. The mole fractions in this mixture were varied systematically to investigate the transition from the water/organic to the water/IL interface. The observed decrease in the rate constant with increasing mole fraction of 1,2-dichloroethane is in contrast with the previously reported direct correlation between the electrochemical rate constant and the diffusion coefficient of redox species in solution.  相似文献   

14.
Atomistic molecular dynamics (MD) simulations have been carried out to investigate the physical properties of monolayers of monododecyl diethylene glycol (C(12)E(2)) surfactants adsorbed at the oil/water and air/water interfaces. The study shows that the surfactant molecules exhibit more extended conformations with a consequent increase of the thickness of the monolayer in the presence of the oil medium. It is noticed that the hydrocarbon tails of the surfactants are more vertically oriented at the oil/water interface. Interestingly, we notice that the presence of the oil medium has a strong influence in restricting both the translational and reorientational motions of the water molecules present in the hydration layer close to the surfactant headgroups.  相似文献   

15.
The effect of the concentration and composition of lysozyme-surfactant (cationic dodecyltrim-ethylammonium bromide and anionic sodium dodecylsulfate) mixtures on the surface tension at aqueous solution/air and aqueous solution/octane interphases is studied. It is established that the shape of surface tension isotherms for the mixed solutions depends on the character of interactions between the protein and surfactants.  相似文献   

16.
Ionic amphiphilic dextran derivatives were synthesized by the attachment of sodium sulfopropyl and phenoxy groups on the native polysaccharide. A family of dextran derivatives was thus obtained with varying hydrophobic content and charge density in the polymer chains. The surface-active properties of polymers were studied at the air-water and dodecane-water interfaces using dynamic surface/interfacial tension measurements. The adsorption was shown to begin in a diffusion-limited regime at low polymer concentrations, that is to say, with the diffusion of macromolecules in the bulk solution. In contrast, at long times the interfacial adsorption is limited by interfacial phenomena: adsorption kinetics or transfer into the adsorbed layer. A semiempirical equation developed by Filippov was shown to correctly fit the experimental curves over the whole time range. The presence of ionic groups in the chains strongly lowers the adsorption kinetics. This effect can be interpreted by electrostatic interactions between the free molecules and the already adsorbed ones. The adsorption kinetics at air-water and oil-water interfaces are compared.  相似文献   

17.
The excited-state dynamics of eosin B (EB) at dodecane/water and decanol/water interfaces has been investigated with polarization-dependent and time-resolved surface second harmonic generation. The results of the polarization-dependent measurements vary substantially with (1) the EB concentration, (2) the age of the sample, and (3) the nature of the organic phase. All of these effects are ascribed to the formation of EB aggregates at the interface. Aggregation also manifests itself in the time-resolved measurements as a substantial shortening of the excited-state lifetime of EB. However, independently of the dye concentration used, the excited-state lifetime of EB at both dodecane/water and decanol/water interfaces is much longer than in bulk water, where the excited-state population undergoes hydrogen-bond-assisted non-radiative deactivation in a few picoseconds. These results indicate that hydrogen bonding between EB and water molecules at liquid/water interfaces is either much less efficient than in bulk water or does not enhance non-radiative deactivation. This strong increase of the excited-state lifetime of EB at liquid/water interfaces opens promising avenues of applying this molecule as a fluorescent interfacial probe.  相似文献   

18.
Silica-gel-coated QCM crystals oscillating in a thickness shear mode are used to measure adsorption of bituminous components in water-saturated heptol (1/1 vol ratio of a heptane/toluene mixture) at the oil/water interface. In addition to the viscoelasticity of the adsorbed film, the effects of the bulk liquid density and viscosity as well as the liquid trapped in interfacial cavities are taken into account for the calculation of adsorbed mass. Asphaltenes in heptol adsorb continuously at the oil/water interface, while resins (the surface-active species in maltenes) show adsorption saturation in the same solvent. For Athabasca bitumen in heptol, two adsorption regimes are observed depending on concentration. At low concentrations, a slow, non-steady-state, and irreversible adsorption takes place. At high concentrations, a steady-state adsorption with limited reversibility results in a quick adsorption saturation. The threshold concentration between these adsorption regimes is 1.5 wt % and 8 wt % for oil/water and oil/gold interfaces, respectively. The threshold concentration, the total adsorbed amount, and the flux of non-steady-state adsorption depend on the resin-to-asphaltene ratio. The threshold concentration is related to the earlier reported critical bitumen concentration characterizing the rigid-to-flexible transition of the interfacial film. We propose a new mechanism based on the change of the effective resin-to-asphaltene ratio with dilution to explain both the adsorption behavior and emulsion stability.  相似文献   

19.
It has long been known that proteins change their conformation upon adsorption to emulsion oil/water interfaces. However, it is only recently that details of the specifics of these structural changes have emerged. The development of synchrotron radiation circular dichroism (SRCD), combined with advances in FTIR spectroscopy, has allowed the secondary and tertiary structure of proteins adsorbed at emulsion oil/water interfaces to be studied. SRCD in particular has provided quantitative information and has enabled new insights into the mechanisms and forces driving protein structure re-arrangement to be achieved.The extent of conformational re-arrangement of proteins at emulsion interfaces is influenced by several factors including; the inherit flexibility of the protein, the distribution of hydrophobic/hydrophilic domains within the protein sequence and the hydrophobicity of the oil phase. In general, proteins lose much of their tertiary structure upon adsorption to the oil/water interface and have considerable amounts of non-native secondary structure. Two key conformations have been identified in the structure of proteins at interfaces, intermolecular β-sheet and α-helix. The preferred conformation appears to be the α-helix which is the most compact amphipathic conformation at the oil/water interface. The polarity of the oil phase can have a considerable influence on the degree of protein conformational re-arrangement because it acts as a solvent for hydrophobic amino acids. The new conformation of proteins at interfaces also means that proteins undergo less heat induced re-arrangement at interfaces than in solution. Different conformations of proteins at interfaces impact on emulsification capability, emulsion stability and protein/emulsion digestion. Hence advances in the understanding of protein conformation at interfaces can help to identify suitable proteins and conditions for the preparation of emulsion based food products.  相似文献   

20.
Broadband vibrational sum frequency spectroscopy (VSFS) has been used to examine the surface structure of alkane liquid/vapor interfaces. The alkanes range in length from n-nonane (C(9)H(20)) to n-heptadecane (C(17)H(36)), and all liquids except heptadecane are studied at temperatures well above their bulk (and surface) freezing temperatures. Intensities of vibrational bands in the CH stretching region acquired under different polarization conditions show systematic, chain length dependent changes. Data provide clear evidence of methyl group segregation at the liquid/vapor interface, but two different models of alkane chain structure can predict chain length dependent changes in band intensities. Each model leads to a different interpretation of the extent to which different chain segments contribute to the anisotropic interfacial region. One model postulates that changes in vibrational band intensities arise solely from a reduced surface coverage of methyl groups as alkane chain length increases. The additional methylene groups at the surface must be randomly distributed and make no net contribution to the observed VSF spectra. The second model considers a simple statistical distribution of methyl and methylene groups populating a three dimensional, interfacial lattice. This statistical picture implies that the VSF signal arises from a region extending several functional groups into the bulk liquid, and that the growing fraction of methylene groups in longer chain alkanes bears responsibility for the observed spectral changes. The data and resulting interpretations provide clear benchmarks for emerging theories of molecular structure and organization at liquid surfaces, especially for liquids lacking strong polar ordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号