首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We study quantum tunneling of a dipolar Bose-Einstein condensate in optical lattice when the spin system initially is prepared in a squeezed coherent state. It is found that there exists quantum tunneling between lattices l and l + 1, l and l - 1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, quantum tunneling disappears between lattices l and l + 1, and that l and l - 1. Correspondingly, the magnetic soliton appears.  相似文献   

2.
We employ the spin-polarized generalized gradient approximation within the density functional theory to investigate the equation of state, magnetism and elastic constant of cubic ACrO3 (A=Pb, Ca, Sr, and Ba) perovskite. The antiferromagnetic phase is the most stable state at zero pressure. Under pressure, the ferromagnetic state will transform to the non-magnetic state. Considering the effect of magnetism, the equilibrium lattice constant, the bulk modulus and the high pressure equations of state agree well with the available experiments. By using the energy-strain method, the predicted elastic properties are satisfactory.  相似文献   

3.
The magnetism of square lattices of quantum dots with up to 12 electrons per dot is studied using the spin-density functional formalism. At small values of the lattice constant, all lattices are nonmagnetic and gapless. When the lattice constant is increased, the shell structure of the single dots governs the magnetism of the lattice. At closed shells, the lattices are nonmagnetic and have a gap at the Fermi level. At the beginning and at the end of a shell, they become ferromagnetic and stay gapless up to large values of the lattice constant. Antiferromagnetism was observed only at midshell after a band gap was opened.  相似文献   

4.
We show that the nuclear spin dynamics in the single-molecule magnet Mn12-ac below 1 K is governed by quantum tunneling fluctuations of the cluster spins, combined with intercluster nuclear spin diffusion. We also obtain the first experimental proof that-surprisingly-even deep in the quantum regime the nuclear spins remain in good thermal contact with the lattice phonons. We propose a simple model for how T-independent tunneling fluctuations can relax the nuclear polarization to the lattice that may serve as a framework for more sophisticated theories.  相似文献   

5.
卢志鹏  祝文军  卢铁城  孟川民  徐亮  李绪海 《物理学报》2013,62(17):176402-176402
采用基于密度泛函理论的第一性原理和准简谐晶格动力学方法对Ru的六角密排 (hcp)、面心立方 (fcc)、体心四方 (bct) 和体心立方 (bcc) 结构的磁性、晶格结构稳定性和高温高压下的相变进行了系统的研究. 计算获得了各相结构的磁性基态及其稳定性范围, 结果表明: 零温下在计算的压力范围内, NM-hcp 结构是Ru最稳定的结构, 压力的单独作用下并没有相变的发生; NM-fcc结构是Ru的亚稳定结构, 而NM-bcc和FM-bct结构在动力学上并不稳定. 高温高压下Ru将发生从NM-hcp到NM-fcc结构的相变, 并给出了Ru的温度压力相图. 关键词: 相变 晶格稳定性 磁性 第一性原理  相似文献   

6.
光晶格中玻色-爱因斯坦凝聚体的自旋和磁研究   总被引:1,自引:0,他引:1  
张卫平 《物理》2003,32(2):76-79
近年应用光晶格(optical lattice)控制原子玻色-爱因斯坦凝聚体(BEC)的研究取得了突破性的进展。德国Munich研究小组首次在三维光晶格中观察到了超冷原子从BEC超流状态向Mott insulator状态的量子相变。这样的量子相变现象不仅具有重大的理论研究价值,而且为BEC的实际应用提供了新的途径。文章介绍了作者近来在光晶格中BEC的自旋和磁特性方面的一些研究进展,并探讨了它们在磁传感器及量子计算中的可能应用。  相似文献   

7.
We study the impact of coherently generated lattice photons on an atomic Mott insulator subjected to a uniform force. Analogous to an array of tunnel-coupled and biased quantum dots, we observe sharp, interaction-shifted photon-assisted tunneling resonances corresponding to tunneling one and two lattice sites either with or against the force and resolve multiorbital shifts of these resonances. By driving a Landau-Zener sweep across such a resonance, we realize a quantum phase transition between a paramagnet and an antiferromagnet and observe quench dynamics when the system is tuned to the critical point. Direct extensions will produce gauge fields and site-resolved spin flips, for topological physics and quantum computing.  相似文献   

8.
We have investigated a series of double-layer structures consisting of a layer of self-assembled non-magnetic CdSe quantum dots (QDs) separated by a thin ZnSe barrier from a ZnCdMnSe diluted magnetic semiconductor (DMSs) quantum well (QW). In the series, the thickness of the ZnSe barrier ranged between 12 and 40 nm. We observe two clearly defined photoluminescence (PL) peaks in all samples, corresponding to the CdSe QDs and the ZnCdMnSe QW, respectively. The PL intensity of the QW peak is observed to decrease systematically relative to the QD peak as the thickness of the ZnSe barrier decreases, indicating a corresponding increase in carrier tunneling from the QW to the QDs. Furthermore, polarization-selective PL measurements reveal that the degree of polarization of the PL emitted by the CdSe QDs increases with decreasing thickness of the ZnSe barriers. The observed behavior is discussed in terms of anti-parallel spin interaction between carriers localized in the non-magnetic QDs and in the magnetic QWs.  相似文献   

9.
First-principles calculations were performed to investigate the stability, electronic structure and magnetism in Group IV elements-doped alkali-metal oxides (M2O) [M: Li, Na, K, Rb] in antifluorite structure using the linear muffin-tin orbital method in its tight-binding representation (TB-LMTO). The calculations reveal that non-magnetic dopants can induce stable half-metallic ferromagnetic ground state in I2-VI compounds. Total energy calculations show that the ferromagnetic state is energetically more stable than the non-magnetic state at equilibrium volume. Ground state properties such as equilibrium lattice constant and bulk modulus were calculated. The magnetic moment is found to be 2.00 μB per dopant atom.  相似文献   

10.
赵兴东  张莹莹  刘伍明 《物理学报》2019,68(4):43703-043703
囚禁在光学晶格中的旋量凝聚体由于其长的相干性和可调控性,使其成为时下热点的多比特量子计算的潜在候选载体,清楚地了解该体系的自旋和磁性的产生和调控就显得尤为重要.本文主要从理论上回顾了光晶格原子自旋链的磁性的由来和操控手段.从激光冷却原子出发,制备旋量玻色-爱因斯坦凝聚体,并装载进光晶格,最后实现原子自旋链,对整个过程的理论研究进行了综述;就如何产生和操控自旋激发进行了详细探讨,其中包括磁孤子的制备;讨论了如何将原子自旋链应用于量子模拟.对光学晶格中的磁激发研究将会对其在冷原子物理、凝聚态物理、量子信息等各方向的应用起指导性作用.  相似文献   

11.
We show within the slave-boson technique that the Anderson lattice model exhibits a Kondo breakdown quantum critical point where the hybridization goes to zero at zero temperature. At this fixed point, the f electrons experience as well a selective Mott transition separating a local-moment phase from a Kondo-screened phase. The presence of a multiscale quantum critical point in the Anderson lattice in the absence of magnetism is discussed in the context of heavy fermion compounds. This study is the first evidence for a selective Mott transition in the Anderson lattice.  相似文献   

12.
We report on measurements of dynamical suppression of interwell tunneling of a Bose-Einstein condensate (BEC) in a strongly driven optical lattice. The strong driving is a sinusoidal shaking of the lattice corresponding to a time-varying linear potential, and the tunneling is measured by letting the BEC freely expand in the lattice. The measured tunneling rate is reduced and, for certain values of the shaking parameter, completely suppressed. Our results are in excellent agreement with theoretical predictions. Furthermore, we have verified that, in general, the strong shaking does not destroy the phase coherence of the BEC, opening up the possibility of realizing quantum phase transitions by using the shaking strength as the control parameter.  相似文献   

13.
The center-of-mass quantization of atoms trapped in a gray optical lattice is observed to manifest itself in the steady-state properties of the atoms. Modulations in the lifetime and macroscopic magnetization as a function of an applied B field are attributed to quantum mechanical tunneling resonances and are shown to exist only under conditions which afford spatial coherence of the trapped atoms over several lattice wells and coherence times that exceed the tunneling period.  相似文献   

14.
A non-magnetic impurity, such as Zn, doped into a non-frustrated antiferromagnet can induce substantial frustrating interactions among the spins surrounding it and result in an enhanced suppression of the antiferromagnetic order. In addition, the strength of the intra-plane exchange couplings surrounding impurities is reduced by the lattice distortions. Using quantum Monte Carlo, we calculate the initial suppression rate of the staggered magnetization in a two-dimensional diluted Heisenberg antiferromagnet with both frustrating interaction and lattice distortion induced by the impurity. We find that the lattice distortion alone cannot explain the experimental results, while the dominant effect of enhanced order suppression is due to the frustrating interaction.  相似文献   

15.
The Bose–Hubbard model (BHM) is a standard model which describes the quantum behavior of ultracold bosons in optical lattice. When tuning the model parameters, a quantum phase transition from superfluid (SF) phase to Mott insulating (MI) phase emerges. However, an extra tunneling process – the density-induced tunneling – is usually ignored in the standard BHM. Using process-chain method, we give a thorough study of the phase diagram of the BHM with density-induced tunneling in different particle density regions and spatial dimensions. We find the density-induced tunneling process can affect the SF-MI phase boundary dramatically, by suppressing the MI region and tune the tip of the phase boundary to lower chemical potential. Our unbiased numerical study gives benchmark results of the phase diagram of the BHM with density-induced tunneling.  相似文献   

16.
We describe a method to create fractional quantum Hall states of atoms confined in optical lattices. We show that the dynamics of the atoms in the lattice is analogous to the motion of a charged particle in a magnetic field if an oscillating quadrupole potential is applied together with a periodic modulation of the tunneling between lattice sites. In a suitable parameter regime the ground state in the lattice is of the fractional quantum Hall type, and we show how these states can be reached by melting a Mott-insulator state in a superlattice potential. Finally, we discuss techniques to observe these strongly correlated states.  相似文献   

17.
We have studied tunneling of spinor Bose–Einstein condensate in an optical lattice. It is found that, when the system being prepared in a squeezed coherent state, there exist the quantum tunneling between lattices l and l+1, l and l−1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, quantum tunneling disappear between lattices l and l+1, and that l and l−1, in this case the magnetic soliton appears.  相似文献   

18.
We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.  相似文献   

19.
In this letter, we have studied quantum tunneling of two-species cold bosonic atoms in an optical lattices. When the optical lattice is not infinitely long and the spin excitations are not in the long-wavelength limit, quantum tunnelings are presented.  相似文献   

20.
Considering the Maxwell equations for the electromagnetic-field propagation in a solid with a three-dimensional superlattice of quantum dots linked by strong tunneling along one axis, we obtained a phenomenological equation in the form of the classical 2+1-dimensional sine-Gordon equation. Electrons were considered classically in the formalism of the Boltzmann kinetic equation for the distribution function. Solutions were obtained as a soliton lattice for the vector potential of the electric field. These lattices emerge as a consequence of the coherent change of the classical distribution function and the electric field generated by tunneling electrons in a system of quantum wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号