首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 348 毫秒
1.
In the numerical solution of some boundary value problems by the finite element method (FEM), the unbounded domain must be truncated by an artificial absorbing boundary or layer to have a bounded computational domain. The perfectly matched layer (PML) approach is based on the truncation of the computational domain by a reflectionless artificial layer which absorbs outgoing waves regardless of their frequency and angle of incidence. In this paper, we present the near-field numerical performance analysis of our new PML approach, which we call as locally-conformal PML, using Monte Carlo simulations. The locally-conformal PML method is an easily implementable conformal PML implementation, to the problem of mesh truncation in the FEM. The most distinguished feature of the method is its simplicity and flexibility to design conformal PMLs over challenging geometries, especially those with curvature discontinuities, in a straightforward way without using artificial absorbers. The method is based on a special complex coordinate transformation which is ‘locally-defined’ for each point inside the PML region. The method can be implemented in an existing FEM software by just replacing the nodal coordinates inside the PML region by their complex counterparts obtained via complex coordinate transformation. We first introduce the analytical derivation of the locally-conformal PML method for the FEM solution of the two-dimensional scalar Helmholtz equation arising in the mathematical modeling of various steady-state (or, time-harmonic) wave phenomena. Then, we carry out its numerical performance analysis by means of some Monte Carlo simulations which consider both the problem of constructing the two-dimensional Green’s function, and some specific cases of electromagnetic scattering.  相似文献   

2.
In the numerical solution of some boundary value problems by the finite element method (FEM), the unbounded domain must be truncated by an artificial absorbing boundary or layer to have a bounded computational domain. The perfectly matched layer (PML) approach is based on the truncation of the computational domain by a reflectionless artificial layer which absorbs outgoing waves regardless of their frequency and angle of incidence. In this paper, we present the near-field numerical performance analysis of our new PML approach, which we call as locally-conformal PML, using Monte Carlo simulations. The locally-conformal PML method is an easily implementable conformal PML implementation, to the problem of mesh truncation in the FEM. The most distinguished feature of the method is its simplicity and flexibility to design conformal PMLs over challenging geometries, especially those with curvature discontinuities, in a straightforward way without using artificial absorbers. The method is based on a special complex coordinate transformation which is ‘locally-defined’ for each point inside the PML region. The method can be implemented in an existing FEM software by just replacing the nodal coordinates inside the PML region by their complex counterparts obtained via complex coordinate transformation. We first introduce the analytical derivation of the locally-conformal PML method for the FEM solution of the two-dimensional scalar Helmholtz equation arising in the mathematical modeling of various steady-state (or, time-harmonic) wave phenomena. Then, we carry out its numerical performance analysis by means of some Monte Carlo simulations which consider both the problem of constructing the two-dimensional Green’s function, and some specific cases of electromagnetic scattering.  相似文献   

3.
A 3-D quantum transport solver based on the spectral element method (SEM) and perfectly matched layer (PML) is introduced to solve the 3-D Schr?dinger equation with a tensor effective mass. In this solver, the influence of the environment is replaced with the artificial PML open boundary extended beyond the contact regions of the device. These contact regions are treated as waveguides with known incident waves from waveguide mode solutions. As the transmitted wave function is treated as a total wave, there is no need to decompose it into waveguide modes, thus significantly simplifying the problem in comparison with conventional open boundary conditions. The spectral element method leads to an exponentially improving accuracy with the increase in the polynomial order and sampling points. The PML region can be designed such that less than -100 dB outgoing waves are reflected by this artificial material. The computational efficiency of the SEM solver is demonstrated by comparing the numerical and analytical results from waveguide and plane-wave examples, and its utility is illustrated by multiple-terminal devices and semiconductor nanotube devices.  相似文献   

4.
在分析不同类型完全匹配层(PML,perfectl ymatched layer)特点的基础上,选用了卷积形式PML(CPML,convolutional perfectly matched layer)截断空中核爆电磁脉冲(NEMP,nuclear electromagnetic pulse)数值模拟的开放边界.从自由空间中电磁波的平面波解和分裂形式的PML出发,构造了未分裂形式的PML,应用付里叶变换的卷积定理,推导出三维旋转椭球-双曲正交坐标系下CPML介质中电磁场的迭代形式的离散方程.获得了很好的截断效果,展示了CPML在NEMP数值模拟中的应用前景.  相似文献   

5.
A 3D quantum transport solver based on the spectral element method (SEM) and perfectly matched layer (PML) is introduced to solve the 3D Schrödinger equation with a tensor effective mass. In this solver, the influence of the environment is replaced with the artificial PML open boundary extended beyond the contact regions of the device. These contact regions are treated as waveguides with known incident waves from waveguide mode solutions. As the transmitted wave function is treated as a total wave, there is no need to decompose it into waveguide modes, thus significantly simplifying the problem in comparison with conventional open boundary conditions. The spectral element method leads to an exponentially improving accuracy with the increase in the polynomial order and sampling points. The PML region can be designed such that less than −100 dB outgoing waves are reflected by this artificial material. The computational efficiency of the SEM solver is demonstrated by comparing the numerical and analytical results from waveguide and plane-wave examples and its utility is illustrated by multiple-terminal devices and semiconductor nanotube devices.  相似文献   

6.
In this paper, we will present a unified formulation of discontinuous Galerkin method (DGM) for Maxwell's equations in linear dispersive and lossy materials of Debye type and in the artificial perfectly matched layer (PML) regions. An auxiliary differential equation (ADE) method is used to handle the frequency-dependent constitutive relations with the help of auxiliary polarization currents in the computational and PML regions. The numerical flux for the dispersive lossy Maxwell's equations with the auxiliary polarization current variables is derived. Various numerical results are provided to validate the proposed formulation.  相似文献   

7.
We analyzed numerical optical characteristics of silver nanoprisms with rounded corners using the three-dimensional finite-difference time-domain method. The enhancement of the electric field was decreased from 240 to 13 times by introducing a large radius of curvature at the nanoprism corners such that it became a cylinder. This caused the optical multi-mode to change to single dipole mode. In the largest local electric field enhancement using the bowtie structure, which consisted of a pair of nanoprisms with rounded corners (the curvature radius and the gap distance were 8.66 and 1 nm, respectively), the electric field was enhanced by a factor of 360 at the hotspot. The bowtie structure that has non-zero curvature radii produces a larger electric field enhancement than does the single nanoprism without a curvature radius. Furthermore, the numerical simulation elucidates that the change of the curvature radius and the change of the gap distance have the same influence on the electric field enhancement.  相似文献   

8.
When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach.  相似文献   

9.
提出一种等效的双重弹性波波场分离数值模拟方法,用于模拟纯纵波和纯横波分离模式的质点振动速度、位移以及散度场和旋度场,并将该方法应用于全弹性波波动方程数值模拟中.同时,详细推导双重弹性波波场分离波动方程的高阶交错网格有限差分数值计算公式及其稳定性条件、数值频散关系和完全匹配层(PML)吸收边界条件.理论分析和数值计算均表明,该方法可以实现高精度双重弹性波波场分离数值模拟,且纯纵波和纯横波得到完全分离,边界吸收效果较好.与前人工作相比,存储量和计算时间均得到有效改善,数值计算结果进一步验证了该方法的优越性.  相似文献   

10.
We formulate and solve the problem of scattering of a plane electromagnetic wave by an infinite, perfectly conducting wedge with a truncated, perfectly conducting circular cylinder which is coated coaxially with a magnetodielectric layer and located along the wedge edge. The rigorous solution is obtained and reduced to a system of linear algebraic equations of the second kind for unknown coefficients of Fourier expansions of the scattered field. The results of calculating the scattered field in the far zone with a specified accuracy are presented for the case of an H-polarized wave. It is shown that for certain values of the electric radius of the cylinder, the backscattering cross section of such a structure has pronounced maxima.  相似文献   

11.
Perfectly matched layers for modelling seismic oceanography experiments   总被引:2,自引:0,他引:2  
Seismic oceanography techniques are able to provide oceanographic properties of the water masses by processing seismic reflection data. These techniques have reported reflected waves due to the fine structure in the ocean, whose order of magnitude is as weak as −80 dB. Thus, if we focus our attention on numerical simulation of this kind of oceanography experiments, the numerical performance of the method should allow obtaining accurate results, where the spurious reflections from the artificial boundaries of the computational grid are, at least, one order of magnitude smaller than the physical phenomena. This can be achieved by introducing perfectly matched layers (PML), which simulate non-reflecting boundaries. The aim of this work is to propose a numerical underwater propagation method, which combines a second-order finite-difference scheme in the physical region of interest with a first-order pressure/velocity discretization in the PML domain. This numerical method provides a low-cost computational algorithm with an accuracy, which allows recovering the reflected phenomena from the ocean fine structure, and moreover, with a spurious error of order −100 dB from the PML domain.  相似文献   

12.
冯乃星  李建雄 《计算物理》2012,29(2):271-276
基于拉伸坐标完全匹配层(SC-PML)公式和Z变换方法,提出以非分裂场形式来实现具有多极点的高阶完全匹配层的高效算法,来截断时域有限差分(FDTD)网格.在吸收性能方面,高阶PML同时具有传统PML和复频率偏移完全匹配层(CFS-PML)二者的优点.提供的数值算例是二维TE极化电磁波与无限长且有限宽度的理想电导体(PEC)薄片的相互作用.仿真结果显示,高阶PML公式在衰减低频行波和隐失波及减少后期反射方面效果好,比传统SC-PML和复频率偏移的卷积完全匹配层(CPML)算法有更好的吸收性能.  相似文献   

13.
A mathematical model of nonlinear two-dimensional waveguiding systems based on photonic crystals was constructed using the finite-difference time-domain method (FDTD), the total field/scattered field (TF/SF) method, and the perfectly matched layer method (PML). The constructed numerical algorithm can also be used for investigation of other two-dimensional waveguiding systems. The results of simulating the elements of particular waveguiding systems are presented.  相似文献   

14.
卷积完全匹配层截断3维金属矩形波导的应用研究   总被引:5,自引:5,他引:0       下载免费PDF全文
 讨论了高功率微波源模拟中波导开放边界截断的需求,分析了不同类型完全匹配层(PML)的特点,选用卷积形式PML截断色散波导器件的开放边界。从自由空间电磁波的平面波解和分裂形式的PML出发,构造了未分裂形式的PML,用傅里叶变换的卷积定理,导出了直角坐标系下卷积完全匹配层(CPML)介质中电磁场的迭代形式的离散方程。在不同频率和模式激励源作用下,模拟计算了CPML截断矩形波导开放边界的性能,数值结果表明最大相对误差都小于-70 dB,远好于Mur吸收边界的截断效果。  相似文献   

15.
We evaluated the collimated beam quality of a planar microlens (PML) for parallel optical interconnect systems. It has been confirmed that the divergence beam from a single mode fiber was collimated by single PML and propagated with good beam quality by about 10 mm, which is the nominal length of microoptics components considered. The divergence beam from a vertical cavity surface emitting laser was collimated using stacked PML and the collimated beam width of 100 μm was obtained. The collimated beam profile was good enough for low loss beam interconnect in a micro-optical bench scheme.  相似文献   

16.
A frequency-domain finite-element (FE) technique for computing the radiation and scattering from axially symmetric fluid-loaded structures subject to a nonsymmetric forcing field is presented. The Berenger perfectly matched layer (PML), applied directly at the fluid-structure interface, makes it possible to emulate the Sommerfeld radiation condition using FE meshes of minimal size. For those cases where the acoustic field is computed over a band of frequencies, the meshing process is simplified by the use of a wavelength-dependent rescaling of the PML coordinates. Quantitative geometry discretization guidelines are obtained from a priori estimates of small-scale structural wavelengths, which dominate the acoustic field at low to mid frequencies. One particularly useful feature of the PML is that it can be applied across the interface between different fluids. This makes it possible to use the present tool to solve problems where the radiating or scattering objects are located inside a layered fluid medium. The proposed technique is verified by comparison with analytical solutions and with validated numerical models. The solutions presented show close agreement for a set of test problems ranging from scattering to underwater propagation.  相似文献   

17.
Scattering from a perfect electric conducting cylinder with random radius buried below a half space dielectric homogenous interface is studied. The cylindrical wave scattered by cylinder is expanded in terms of plane wave spectrum. Small perturbation method is used to study the interaction of each plane wave with the interface. The zeroth order term yields solution for a flat interface, whereas scattering from a rough surface is given by first-order term. Results are obtained for both TM and TE polarizations. Analytical expressions of the average scattered field are obtained and verified using numerical evaluation. Different scattering scenarios are simulated by varying the distribution of the radius. It is observed that average scattering cross section of an ensemble with normal/uniform distribution is almost equal to that of a cylinder with mean radius.  相似文献   

18.
Absorbing boundary conditions for the nonlinear Euler and Navier–Stokes equations in three space dimensions are presented based on the perfectly matched layer (PML) technique. The derivation of equations follows a three-step method recently developed for the PML of linearized Euler equations. To increase the efficiency of the PML, a pseudo mean flow is introduced in the formulation of absorption equations. The proposed PML equations will absorb exponentially the difference between the nonlinear fluctuation and the prescribed pseudo mean flow. With the nonlinearity in flux vectors, the proposed nonlinear absorbing equations are not formally perfectly matched to the governing equations as their linear counter-parts are. However, numerical examples show satisfactory results. Furthermore, the nonlinear PML reduces automatically to the linear PML upon linearization about the pseudo mean flow. The validity and efficiency of proposed equations as absorbing boundary conditions for nonlinear Euler and Navier–Stokes equations are demonstrated by numerical examples.  相似文献   

19.
王颖  陈浩 《应用声学》2018,37(6):849-854
由于波场数值模拟的计算区域是有限的,为了压制截断边界造成的人工边界反射,通常采用完全匹配层作为吸收边界条件。但是在含液-固界面的弹性介质中进行正演模拟时,完全匹配层边界条件容易造成稳定性方面的问题。因此,该文将多轴完全匹配层应用于该类介质的正演模拟,以改善完全匹配层边界条件引起的不稳定问题。通过在具有弹性海底的海洋环境模型以及充填液体的井孔模型中进行弹性波方程的正演模拟,分别采用传统的完全匹配层和多轴完全匹配层作为吸收边界条件,对比验证了多轴完全匹配层在含液-固界面弹性介质中数值模拟的有效性和稳定性。  相似文献   

20.
The paper presents a rigorous solution of the scattering problem by a circular dielectric and perfectly conducting cylinders of any radius and any height in the rectangular waveguide oriented perpendicularly to a wall. The method is based on the representation of fields in waveguide and dielectric medium by cylindrical eigenfunctions and application of boundary conditions on surfaces of the cylinder to evaluate the fields inside and outside the cylinder. The reflection and transmission coefficients are expressed through the fields. As an example the reflection and transmission coefficients versus frequency for various dielectric and metallic cylinders are computed. The comparison of numerical with experimental data is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号