首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents thermal analysis on crosstalk and performance of optoelectronic transmitter modules and also demonstrates the thermal analysis for efficient heat dissipation for the transmitter modules. The thermal crosstalk model for analysis is based on interconnects parameters for vertically stacked and horizontally packaged optoelectronic transmitter modules. While the analytical expression is used to estimate the thermal critical frequency, f crit_th , above which signals become severely deteriorated, a Teflon-based thermal printed circuit board (PCB) has been designed for packaging the optoelectronic transmitter modules to ensure efficient heat dissipation. The thermal and performance analysis of the packaged modules show that the chips operate at temperatures below the f crit_th , which is apt for reliable data and signal transmission.  相似文献   

2.
Analysis of thermal and electrical characteristics of the proposed device, selective buried oxide junctionless transistor (SELBOX-JLT) along with its analog performance, is compared with silicon on insulator junctionless transistor (SOI-JLT). The proposed device shows better thermal efficiency. The maximum device temperature of SELBOX-JLT is 311 K, much less than that of SOI-JLT (445 K). The proposed device has almost no effect of self-heating on output characteristics. SELBOX-JLT exhibits better I ON/I OFF ratio, subthreshold slope, and drain-induced barrier lowering as compared to SOI-JLT for the same channel length. The analog performance parameters as transconductance (G m ), transconductance/drain current ratio (G m /I D), drain conductance (G D), output resistance (R 0), intrinsic gain (G m R 0), and unity-gain frequency (f T ) of the proposed device are found to be better than SOI-JLT.  相似文献   

3.
This paper presents a comparison of thermal performance of helical screw tape inserts in laminar flow of Al2O3/water and CuO/water nanofluids through a straight circular duct with constant heat flux boundary condition. The helical screw tape inserts with twist ratios Y = 1.78, 2.44 and 3 were used in the experimental study using 0.1% volume concentration Al2O3/water and CuO/water nanofluids. Nanofluids with required volume concentration of 0.1% were prepared by dispersing specified amounts of Al2O3 and CuO nanoparticles in deionised water. The performance analysis of helical screw tape inserts in laminar flow of Al2O3/water and CuO/water nanofluids is done by evaluating thermal performance factor for constant pumping power condition. Thermal performance factor of helical screw tape inserts using CuO/water nanofluid is found to be higher when compared with the corresponding value using Al2O3/water. Therefore, the helical screw tape inserts show better thermal performance when used with CuO/water nanofluid than with Al2O3/water nanofluid.  相似文献   

4.
《Current Applied Physics》2018,18(6):752-761
Sb-based alloys offer great potential for photovoltaic and thermophotovoltaic applications. In this paper, we study the performance of AlxGa1-xSb (x = 0, 0.15, and 0.50) single-junction solar cells over a temperature range of 25–250 °C. The dark current-voltage, one-sun current-voltage, and external quantum efficiency measurements were acquired at different temperatures. Correlations between experimental and numerical results are made to draw conclusions about the thermal behavior of the cells. It is shown that, while the bandgaps decrease linearly with temperature leading to the reduction of open-circuit voltages, the short-circuit current densities decrease with non-linear trends. The temperature-dependent dark current densities were extracted by fitting the dark current-voltage curves to single- and double-diode models to give an insight into the effect of intrinsic carrier concentration (ni) on the cell performance. We find that the ni has a significant impact on temperature-dependent cell performance. These findings could lay a groundwork for the future Sb-based photovoltaic systems that operate at high temperatures.  相似文献   

5.
《Current Applied Physics》2015,15(3):190-193
We herein report an enhancement of the thermoelectric performance of spark plasma sintered polycrystalline n-type Bi2Te2.7Se0.3 by the intercalation of Cu and the doping of Al on Bi-sites. Through the intercalation of a small amount of Cu (0.008), the reproducibility could be significantly improved, with ZT was enhanced from 0.64 to 0.73 at 300 K due to the reduced lattice thermal conductivity benefiting from intensified point-defect phonon scattering. We also found that Al is an effective doping element for power factor enhancement and for reducing the lattice thermal conductivity of Cu-intercalated Bi2Te2.7Se0.3. With these synergetic effects, an enhanced ZT values of 0.78 at 300 K and 0.81 at 360 K were obtained in 1 at% Al-doped Cu0.008Bi2Te2.7Se0.3 (Cu0.008Bi1.98Al0.02Te2.7Se0.3).  相似文献   

6.
The axial dispersion model for cross-flow heat exchangers is investigated to predict steady state thermal performance more accurately. This model takes flow maldistribution and backmixing into account and is simple and effective in describing their effect on the temperature effectiveness of a heat exchanger. An exact solution together with its asymptotic form for high dispersive Péclet numbers is obtained. The analysis shows that the temperature effectiveness deterioration caused by axial dispersion is significant for the dispersive Péclet number Pe < 20, particularly when the thermal capacity rate ratio is close to one. The P1, P2-charts are presented, which are useful for the design of compact cross-flow heat exchangers.  相似文献   

7.
The dependence of the thermal conductivity of indium antimonide on temperature (in the range 300–450 K) and hydrostatic pressure (up to 0.4 GPa) has been investigated. It is shown that the phonon thermal conductivity λph obeys the law T ?n (n ≥ 1). Hydrostatic pressure affects the magnitude and temperature dependence of the thermal conductivity of InSb: with an increase in pressure, the thermal conductivity increases, while the parameter n in the dependence λphT ?n decreases.  相似文献   

8.
Although commonly used, the coefficient of performance COP is not always an adequate measure to describe the effectiveness of a sorption heat pump. Equations for four different efficiencies are derived, discussed and compared for absorption heat pumps (AHP). A flow-sheeting computer program, developed for both design and evaluation simulations of arbitrarily complex absorption cycles, is used to exemplify the derived equations. The working fluid pair H2OLiBr has been used in two different AHP configurations. The examples given clearly show that the COP can only be used to compare different AHPs operated at the same circulation ratio. The COP can be considered as an indicator of the effectiveness of heat exchange within and thermal insulation of a heat pump operated at a fixed circulation ratio. Nevertheless, it is an insufficient measure to compare different AHPs, even when they are operated at the same circulation ratio. On the other hand, the coefficient of performance for cooling Qe/Qg is better in this respect since it takes into account the real heat flow to the generator. The Carnot efficiency COPrev takes into consideration both the real heat outputs from the absorber and condenser, and the temperature of heat sources and heat sinks. The thermodynamic efficiency Eth is shown to be a more logical measure of the heat pump efficiency, since it takes into account the real heat input the generator. The exergetic efficiency Eex can be considered as an alternative to the thermodyanamic efficiency Eth but it offers a possibility to take into account any temperature level where heat energy may be considered worthless. However, both Eex and Eth are not conventionally used since their numerical values are always less than 1.0. On the other hand, the exergetic index Iex is directly related to Eex but its numerical value shoul be considered as a more significant measure for evaluating the performance of AHP systems, since it properly takes into account the exergy losses which inevitably occur in the system. It may however be stressed that exergy analysis should be used as a compliment to the First Law analysis.  相似文献   

9.
The thermal diffusivities of UC1 ? xNx of several compositions were measured from 100 to 1000 °K by a laser flash method. The thermal conductivity was separated into electronic and phonon components by assuming the constant Lorenz number. The phonon conductivity showed an anomalous behaviour against composition at low temperatures. The total thermal conductivity of UC1 ? xNx showed a minimum above 300 °K at an intermediate composition which moved to higher carbon content with increasing temperature. This behaviour was explained by the temperature dependence of the lattice and electronic components.  相似文献   

10.
The effect of annealing on the magnetic anisotropy and the thermal stability has been investigated for an amorphous Gd27Tb10Fe63 film prepared by magnetron sputtering. On the basis of a pseudodipolar interaction, a numerical computation is performed primarily on fitting a variance of the anisotropy constant with that of the thermal annealing at various temperatures and shows that a contribution from Tb-Fe pairs are dominant in determining the perpendicular anisotropy. Hc = Ku/Ms is used to describe the variance of coercivity after that heat treatment. The behaviour of annealing the films in air shows that the films with a protective Al film possess a good thermal stability for magneto-optical recording.  相似文献   

11.
The effect of Fe substitution for Co on direct current (DC) electrical and thermal conductivity and thermopower of Ca3(Co1−xFex)4O9 (x = 0, 0.05, 0.08), prepared by a sol–gel process, was investigated in the temperature range from 380 down to 5K. The results indicate that the substitution of Fe for Co results in an increase in thermopower and DC electrical resistivity and substantial (14.9–20.4% at 300K) decrease in lattice thermal conductivity. Experiments also indicated that the temperature dependence of electrical resistivity ρ for heavily substituted compounds Ca3(Co1−xFex)4O9 (x = 0.08) obeyed the relation lnρT−1/3 at low temperatures, T < ~55K, in agreement with Mott’s two-dimensional (2D) variable range hopping model. The enhancement of thermopower and electrical resistivity was mainly ascribed to a decrease in hole carrier concentration caused by Fe substitution, while the decrease of thermal conductivity can be explained as phonon scattering caused by the impurity. The thermoelectric performance of Ca3Co4O9 was not improved in the temperature range investigated by Fe substitution largely due to great increase in electrical resistivity after Fe substitution.  相似文献   

12.
An interesting two-step passivation (with ledge structure and sulphide based chemical treatment) on base surface, for the first time, is demonstrated to study the temperature-dependent DC characteristics and noise performance of an InGaP/GaAs heterojunction bipolar transistor (HBT). Improved transistor behaviors on maximum current gain βmax, offset voltage ΔVCE, and emitter size effect are obtained by using the two-step passivation. Moreover, the device with the two-step passivation exhibits relatively temperature-independent and improved thermal stable performances as the temperature is increased. Therefore, the two-step passivationed device can be used for high-temperature and low-power electronics applications.  相似文献   

13.
α-MgAgSb is a promising thermoelectric materials having good performance at medium temperature. Native defects in α-MgAgSb are frequently reported experimentally and are tightly involved in the thermoelectric properties of α-MgAgSb. In this paper, all possible native defects in α-MgAgSb are calculated as well as detailed results are given and discussed. The concentrations of several dominant native defects, for example, VAg and AgSb, could reach up to 10?4 cm?3 at 540 K. Furthermore, the electronic structure and transport properties of α-MgAgSb with dominant native defects are investigated. Results show that the introduction of AgMg and VAg contributes to a much lower inertial mass and slight decrease in Seebeck coefficient. The lattice thermal conductivity is greatly reduced with the introduction of native defects. For α-MgAgSb with VAg, the peak ZT could reach up to 1.84 at 420 K. Our calculation demonstrates that defect engineering is an effective strategy to enhance thermoelectric performance of the materials.  相似文献   

14.
This study focused on preparation of tungsten oxide supported on zirconia by thermal spreading. The prepared samples were characterized by infrared spectroscopy, UV-vis diffuse reflection spectroscopy, X-ray diffraction, and also by methanol dehydration reaction. It was observed that isolated octahedral tungsten dispersed species and dispersed polytungstate were formed on zirconia surface, although some WO3 that remained after the thermal treatment could also be detected. The presence of these species led to an increase of the number of Lewis sites and the generation of Brönsted acid sites. High calcination temperatures promoted the creation of Brönsted sites as a consequence of polytungstate species formation. The activity on methanol dehydration was also determined by the concentration of these species, whereas the isolated WOx species were found poorly active. The correlation observed between the catalytic performance and the tungsten dispersed species, as revealed by spectroscopic techniques, evidenced the occurrence of thermal spreading of WO3 on ZrO2. The results presented in this work show that WO3 thermal spreading on ZrO2 may be effectively accomplished as predicted by thermodynamics.  相似文献   

15.
16.
This paper reports an experimental study of the heat capacity and crystal lattice parameters of a polycrystalline sample of yttrium diboride prepared by high-temperature synthesis from elements. The electronic and lattice contributions to the heat capacity are isolated. The temperature dependences of the characteristic temperature, the linear thermal expansion coefficients αa(T) and α c (T), the bulk thermal expansion coefficient β(T), and the Grüneisen coefficient are calculated. A region of negative values of α c (T) and β(T) is revealed. Anharmonicity is found to exert only a minor effect on the YB2 lattice dynamics over a larger part of the temperature range covered.  相似文献   

17.
We have studied the behavior of the thermal expansion coefficient α(T) (in a zero magnetic field and at H≈4 T), the heat capacity C(T), and the thermal conductivity κ(T) of magnesium boride (MgB2) in the vicinity of Tc and at lower temperatures. It was established that MgB2, like oxide-based high-temperature superconductors, exhibits a negative thermal expansion coefficient at low temperatures. The anomaly of α(T) in MgB2 is significantly affected by the magnetic field. It was established that, in addition to the well-known superconducting transition at Tc≈40 K, MgB2 exhibits an anomalous behavior of both heat capacity and thermal conductivity in the region of T≈10–12 K. The anomalies of C(T) and κ(T) take place in the same temperature interval where the thermal expansion coefficient of MgB2 becomes negative. The low-temperature anomalies are related to the presence of a second group of charge carriers in MgB2 and to an increase in the density of the Bose condensate corresponding to these carriers at Tc2≈10–12 K.  相似文献   

18.
The data on thermal expansion at low temperatures have been obtained for HTSC single crystals of the system Bi2Sr2?x LaxCuO6 with different doping levels. Anomalous (negative) thermal expansion is observed in the temperature range from 5 to 20 K. It is shown that the anomaly vanishes in an overdoped sample. An anomalously strong effect of magnetic fields of 2–4 T on the negative thermal expansion domain is observed. The effect of field screening, frozen field, doping level, defects and oxygen vacancies on the region of thermal expansion anomalies is investigated. The origin of the observed anomalies in the properties of the system Bi2Sr2?x LaxCuO6, as well as other HTSC systems in which similar anomalies have been observed, is discussed.  相似文献   

19.
The thermal conductivity κ (within the range 4–300 K) and electrical conductivity σ (from 80 to 300 K) of polycrystalline Sm3S4 with the lattice parameter a=8.505 Å (with a slight off-stoichiometry toward Sm2S3) are measured. For T>95 K, charge transfer is shown to occur, as in stoichiometric Sm3S4 samples, by the hopping mechanism (σ ~ exp(?ΔE/kT) with ΔE ~ 0.13 eV). At low temperatures [up to the maximum in the lattice thermal conductivity κph(T)], κphT 2.6; in the range 20–50 K, κphT ?1.2; and for T>95 K, where the hopping charge-transfer mechanism sets in, κphT ?0.3 and a noticeable residual thermal resistivity is observed. It is concluded that in compounds with inhomogeneous intermediate rare-earthion valence, to which Sm3S4 belongs, electron hopping from Sm2+ (ion with a larger radius) to Sm3+ (ion with a smaller radius) and back generates local stresses in the crystal lattice which bring about a change in the thermal conductivity scaling of κph from T ?1.2 to T ?0.3 and the formation of an appreciable residual thermal resistivity.  相似文献   

20.
A modified 1-D transient model considering intra-particle thermal conduction is adopted to improve the predictions of the ignition characteristics of isolated coal particles. The study aims at resolving the incorrect prediction on the variation trend of ignition temperature Ti with the change of oxygen concentration XO2, interpreting the contradictory dependencies on coal particle size and furnace temperature and clarifying the conditions when the intra-particle thermal conduction should be considered. The predictions are compared with microgravity data in which the buoyancy effect is minimized. The results reveal that the previous ignition model with transient adiabatic criterion fails to predict the Ti variation with XO2, since it cannot accurately predict Ti and delay time in the low XO2 region. Instead, the ignition model with flammability limit ignition criterion can well predict Ti in a wide range of XO2. Intra-particle thermal conduction causes remarkable temperature differences for large coal particles, and moreover, the variation trends of surface and center temperatures with particle size are very different. The center temperature at ignition drops remarkably with increasing particle size, while the surface temperature barely changes or slightly increases with particle size. At the same particle size, the variation trends of surface and center temperatures with furnace temperature are also opposite. The ignition mode and variation trend of ignition surface temperature with particle size depends on the heating rate and particle size itself. The contradictory experimental results reported by different researchers are attributed to the particle size and temperature measurement location. The conditions necessary to consider the intra-particle thermal conduction are discussed. Lastly, the effect of the intraparticle thermal conduction is shown on an ignition mode diagram.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号