首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a unified approach to a couple of central limit theorems for the radial behavior of radial random walks on hyperbolic spaces as well as for time-homogeneous Markov chains on $[0,\infty [$ whose transition probabilities are defined in terms of Jacobi convolutions. The proofs of all central limit theorems are based on corresponding limit results for the associated Jacobi functions $\varphi _{\lambda }^{(\alpha ,\beta )}$ . In particular, we consider the limit $\alpha \rightarrow \infty $ , the limit $\varphi _{i\rho -n\lambda }^{(\alpha ,\beta )}(t/n)$ for $n\rightarrow \infty $ , and the behavior of the Jacobi function $\varphi _{i\rho -\lambda }^{(\alpha ,\beta )}(t)$ for small $\lambda $ . The proofs of all these limit results are based on the known Laplace integral representation for Jacobi functions. Parts of the results are known, other improve known ones, and other are new.  相似文献   

2.
Let \(x_{n,k}^{(\alpha ,\beta )}\) , \(k=1,\ldots ,n\) , be the zeros of Jacobi polynomials \(P_{n}^{(\alpha ,\beta )}(x)\) arranged in decreasing order on \((-1,1)\) , where \(\alpha ,\beta >-1\) , and \(\theta _{n,k}^{(\alpha ,\beta )}=\arccos x_{n,k}^{(\alpha ,\beta )}\) . Gautschi, in a series of recent papers, conjectured that the inequalities $$n\theta_{n,k}^{(\alpha,\beta)}<(n+1)\theta_{n+1,k}^{(\alpha,\beta)} $$ and $$(n+(\alpha+\beta+3)/2)\theta_{n+1,k}^{(\alpha,\beta)}<(n+(\alpha+\beta+1)/2)\theta_{n,k}^{(\alpha,\beta)}, $$ hold for all \(n\geq 1\) , \(k=1,\ldots ,n\) , and certain values of the parameters \(\alpha \) and \(\beta \) . We establish these conjectures for large domains of the \((\alpha ,\beta )\) -plane by using a Sturmian approach.  相似文献   

3.
4.
We investigate the zeros of a family of hypergeometric polynomials $M_n(x;\beta ,c)=(\beta )_n\,{}_2F_1(-n,-x;\beta ;1-\frac{1}{c})$ , $n\in \mathbb N ,$ known as Meixner polynomials, that are orthogonal on $(0,\infty )$ with respect to a discrete measure for $\beta >0$ and $0<c<1.$ When $\beta =-N$ , $N\in \mathbb N $ and $c=\frac{p}{p-1}$ , the polynomials $K_n(x;p,N)=(-N)_n\,{}_2F_1(-n,-x;-N;\frac{1}{p})$ , $n=0,1,\ldots , N$ , $0<p<1$ are referred to as Krawtchouk polynomials. We prove results for the zero location of the orthogonal polynomials $M_n(x;\beta ,c)$ , $c<0$ and $n<1-\beta $ , the quasi-orthogonal polynomials $M_n(x;\beta ,c)$ , $-k<\beta <-k+1$ , $k=1,\ldots ,n-1$ and $0<c<1$ or $c>1,$ as well as the polynomials $K_{n}(x;p,N)$ with non-Hermitian orthogonality for $0<p<1$ and $n=N+1,N+2,\ldots $ . We also show that the polynomials $M_n(x;\beta ,c)$ , $\beta \in \mathbb R $ are real-rooted when $c\rightarrow 0$ .  相似文献   

5.
In this paper we consider properties and power expressions of the functions $f:(-1,1)\rightarrow \mathbb{R }$ and $f_L:(-1,1)\rightarrow \mathbb{R }$ , defined by $$\begin{aligned} f(x;\gamma )=\frac{1}{\pi }\int \limits _{-1}^1 \frac{(1+xt)^\gamma }{\sqrt{1-t^2}}\,\mathrm{d}t \quad \text{ and}\quad f_L(x;\gamma )=\frac{1}{\pi }\int \limits _{-1}^1 \frac{(1+xt)^\gamma \log (1+x t)}{\sqrt{1-t^2}}\,\mathrm{d}t, \end{aligned}$$ respectively, where $\gamma $ is a real parameter, as well as some properties of a two parametric real-valued function $D(\,\cdot \,;\alpha ,\beta ) :(-1,1) \rightarrow \mathbb{R }$ , defined by $$\begin{aligned} D(x;\alpha ,\beta )= f(x;\beta )f(x;-\alpha -1)- f(x;-\alpha )f(x;\beta -1),\quad \alpha ,\beta \in \mathbb{R }. \end{aligned}$$ The inequality of Turán type $$\begin{aligned} D(x;\alpha ,\beta )>0,\quad -1<x<1, \end{aligned}$$ for $\alpha +\beta >0$ is proved, as well as an opposite inequality if $\alpha +\beta <0$ . Finally, for the partial derivatives of $D(x;\alpha ,\beta )$ with respect to $\alpha $ or $\beta $ , respectively $A(x;\alpha ,\beta )$ and $B(x;\alpha ,\beta )$ , for which $A(x;\alpha ,\beta )=B(x;-\beta ,-\alpha )$ , some results are obtained. We mention also that some results of this paper have been successfully applied in various problems in the theory of polynomial approximation and some “truncated” quadrature formulas of Gaussian type with an exponential weight on the real semiaxis, especially in a computation of Mhaskar–Rahmanov–Saff numbers.  相似文献   

6.
Let $\alpha $ and $\beta $ be real numbers such that $1$ , $\alpha $ and $\beta $ are linearly independent over $\mathbb {Q}$ . A classical result of Dirichlet asserts that there are infinitely many triples of integers $(x_0,x_1,x_2)$ such that $|x_0+\alpha x_1+\beta x_2| < \max \{|x_1|,|x_2|\}^{-2}$ . In 1976, Schmidt asked what can be said under the restriction that $x_1$ and $x_2$ be positive. Upon denoting by $\gamma \cong 1.618$ the golden ratio, he proved that there are triples $(x_0,x_1,x_2) \in \mathbb {Z}^3$ with $x_1,x_2>0$ for which the product $|x_0 + \alpha x_1 + \beta x_2| \max \{|x_1|,|x_2|\}^\gamma $ is arbitrarily small. Although Schmidt later conjectured that $\gamma $ can be replaced by any number smaller than $2$ , Moshchevitin proved very recently that it cannot be replaced by a number larger than $1.947$ . In this paper, we present a construction of points $(1,\alpha ,\beta )$ showing that the result of Schmidt is in fact optimal. These points also possess strong additional Diophantine properties that are described in the paper.  相似文献   

7.
Let C be the classical Cantor triadic set. For ${\alpha,\beta\in [-1,1]}$ , a sufficient and necessary condition for ${(C\times C)\cap (C\times C+(\alpha,\beta))}$ to be self-similar is obtained.  相似文献   

8.
In this paper, we consider the complex Ginzburg–Landau equation ${u_t = e^{i\theta} [\Delta u + |u|^\alpha u] + \gamma u}$ on ${\mathbb{R}^N}$ , where ${\alpha > 0,\,\gamma \in \mathbb{R}}$ and ${-\pi /2 < \theta < \pi /2}$ . By convexity arguments, we prove that, under certain conditions on ${\alpha,\theta,\gamma}$ , a class of solutions with negative initial energy blows up in finite time.  相似文献   

9.
Let (M,g) be an n-dimensional, compact Riemannian manifold and ${P_0(\hbar) = -\hbar{^2} \Delta_g + V(x)}$ be a semiclassical Schrödinger operator with ${\hbar \in (0,\hbar_0]}$ . Let ${E(\hbar) \in [E-o(1),E+o(1)]}$ and ${(\phi_{\hbar})_{\hbar \in (0,\hbar_0]}}$ be a family of L 2-normalized eigenfunctions of ${P_0(\hbar)}$ with ${P_0(\hbar) \phi_{\hbar} = E(\hbar) \phi_{\hbar}}$ . We consider magnetic deformations of ${P_0(\hbar)}$ of the form ${P_u(\hbar) = - \Delta_{\omega_u}(\hbar) + V(x)}$ , where ${\Delta_{\omega_u}(\hbar) = (\hbar d + i \omega_u(x))^*({\hbar}d + i \omega_u(x))}$ . Here, u is a k-dimensional parameter running over ${B^k(\epsilon)}$ (the ball of radius ${\epsilon}$ ), and the family of the magnetic potentials ${(w_u)_{u\in B^k(\epsilon)}}$ satisfies the admissibility condition given in Definition 1.1. This condition implies that kn and is generic under this assumption. Consider the corresponding family of deformations of ${(\phi_{\hbar})_{\hbar \in (0, \hbar_0]}}$ , given by ${(\phi^u_{\hbar})_{\hbar \in(0, \hbar_0]}}$ , where $$\phi_{\hbar}^{(u)}:= {\rm e}^{-it_0 P_u(\hbar)/\hbar}\phi_{\hbar}$$ for ${|t_0|\in (0,\epsilon)}$ ; the latter functions are themselves eigenfunctions of the ${\hbar}$ -elliptic operators ${Q_u(\hbar): ={\rm e}^{-it_0P_u(\hbar)/\hbar} P_0(\hbar) {\rm e}^{it_0 P_u(\hbar)/\hbar}}$ with eigenvalue ${E(\hbar)}$ and ${Q_0(\hbar) = P_{0}(\hbar)}$ . Our main result, Theorem1.2, states that for ${\epsilon >0 }$ small, there are constants ${C_j=C_j(M,V,\omega,\epsilon) > 0}$ with j = 1,2 such that $$C_{1}\leq \int\limits_{\mathcal{B}^k(\epsilon)} |\phi_{\hbar}^{(u)}(x)|^2 \, {\rm d}u \leq C_{2}$$ , uniformly for ${x \in M}$ and ${\hbar \in (0,h_0]}$ . We also give an application to eigenfunction restriction bounds in Theorem 1.3.  相似文献   

10.
Let ${(\Omega, \mathcal{F}, P)}$ be a probability space. For each ${\mathcal{G}\subset\mathcal{F}}$ , define ${\overline{\mathcal{G}}}$ as the σ-field generated by ${\mathcal{G}}$ and those sets ${F\in \mathcal{F}}$ satisfying ${P(F)\in\{0,1\}}$ . Conditions for P to be atomic on ${\cap_{i=1}^k\overline{\mathcal{A}_i}}$ , with ${\mathcal{A }_1,\ldots,\mathcal{A}_k\subset\mathcal{F}}$ sub-σ-fields, are given. Conditions for P to be 0-1-valued on ${\cap_{i=1}^k \overline{\mathcal{A}_i}}$ are given as well. These conditions are useful in various fields, including Gibbs sampling, iterated conditional expectations and the intersection property.  相似文献   

11.
12.
We prove that weak-strong uniqueness holds for the $\beta $ -generalized surface quasi-geostrophic equation in the regular class $\nabla \theta \in L^{q}(0,T; L^{p}(\mathbb{R }^{2}))$ with $\frac{\alpha }{q}+\frac{2}{p}=\alpha +\beta -1$ , where $\alpha \in (0,1], \beta \in [1,2)$ and $\frac{2}{\alpha +\beta -1}<p<\infty $ .  相似文献   

13.
Given Banach spaces X and Y, we show that, for each operator-valued analytic map ${\alpha \in \mathcal O (D,\mathcal L(Y,X))}$ satisfying the finiteness condition ${\dim (X/\alpha (z)Y) < \infty}$ pointwise on an open set D in ${\mathbb {C}^n}$ , the induced multiplication operator ${\mathcal O(U,Y) \stackrel{\alpha}{\longrightarrow} \mathcal O (U,X)}$ has closed range on each Stein open set ${U \subset D}$ . As an application we deduce that the generalized range ${{\rm R}^{\infty}(T) = \bigcap_{k \geq 1}\sum_{| \alpha | = k} T^{\alpha}X}$ of a commuting multioperator ${T \in \mathcal L(X)^n}$ with ${\dim(X/\sum_{i=1}^n T_iX) < \infty}$ can be represented as a suitable spectral subspace.  相似文献   

14.
We treat the partial regularity of locally bounded local minimizers $u$ for the $p(x)$ -energy functional $$\begin{aligned} \mathcal{E }(v;\Omega ) = \int \left( g^{\alpha \beta }(x)h_{ij}(v) D_\alpha v^i (x) D_\beta v^j (x) \right) ^{p(x)/2} dx, \end{aligned}$$ defined for maps $v : \Omega (\subset \mathbb R ^m) \rightarrow \mathbb R ^n$ . Assuming the Lipschitz continuity of the exponent $p(x) \ge 2$ , we prove that $u \in C^{1,\alpha }(\Omega _0)$ for some $\alpha \in (0,1)$ and an open set $\Omega _0 \subset \Omega $ with $\dim _\mathcal{H }(\Omega \setminus \Omega _0) \le m-[\gamma _1]-1$ , where $\dim _\mathcal{H }$ stands for the Hausdorff dimension, $[\gamma _1]$ the integral part of $\gamma _1$ , and $\gamma _1 = \inf p(x)$ .  相似文献   

15.
We introduce the notion of crystallographic number systems, generalizing matrix number systems. Let Γ be a group of isometries of ${\mathbb{R}^d,g}$ an expanding affine mapping of ${\mathbb{R}^d}$ with ${g\circ\Gamma\circ g^{-1}\subset\Gamma}$ and ${\mathcal{D}\subset\Gamma}$ . We say that ${(\Gamma,g,\mathcal{D})}$ is a Γ-number system if every isometry ${\gamma\in \Gamma}$ has a unique expansion $$\gamma=g^n\delta_n g^{-n}\,g^{n-1}\delta_{n-1} g^{-(n-1)}\dots g\delta_{1} g^{-1}\,\delta_0,$$ for some ${n\in \mathbb{N}}$ and ${\delta_0,\ldots,\delta_n\in \mathcal{D}}$ . A tile can be attached to a Γ-number system. We show fundamental topological properties of this tile: they admit the fixed point of g as interior point and tesselate the space by the whole group Γ. Moreover, we give several examples, among them a class of p2-number systems, where p2 is the crystallographic group generated by the π-rotation and two independent translations.  相似文献   

16.
Let f be an holomorphic endomorphism of ${\mathbb{P}^k}$ and μ be its measure of maximal entropy. We prove an almost sure invariance principle for the systems ${(\mathbb{P}^k,f,\mu)}$ . Our class ${\mathcal {U}}$ of observables includes the Hölder functions and unbounded ones which present analytic singularities. The proof is based on a geometric construction of a Bernoulli coding map ${\omega: (\Sigma, s, \nu) \to (\mathbb{P}^k,f,\mu)}$ . We obtain the invariance principle for an observable ψ on ${(\mathbb{P}^k,f,\mu)}$ by applying Philipp–Stout’s theorem for ${\chi = \psi \circ \omega}$ on (Σ, s, ν). The invariance principle implies the central limit theorem as well as several statistical properties for the class ${\mathcal {U}}$ . As an application, we give a direct proof of the absolute continuity of the measure μ when it satisfies Pesin’s formula. This approach relies on the central limit theorem for the unbounded observable log ${{\tt Jac}\, f \in \mathcal{U}}$ .  相似文献   

17.
A subgroup property $\alpha $ is transitive in a group $G$ if $U \alpha V$ and $V \alpha G$ imply that $U \alpha G$ whenever $U \le V \le G$ , and $\alpha $ is persistent in $G$ if $U \alpha G$ implies that $U \alpha V$ whenever $U \le V \le G$ . Even though a subgroup property $\alpha $ may be neither transitive nor persistent, a given subgroup $U$ may have the property that each $\alpha $ -subgroup of $U$ is an $\alpha $ -subgroup of $G$ , or that each $\alpha $ -subgroup of $G$ in $U$ is an $\alpha $ -subgroup of $U$ . We call these subgroup properties $\alpha $ -transitivity and $\alpha $ -persistence, respectively. We introduce and develop the notions of $\alpha $ -transitivity and $\alpha $ -persistence, and we establish how the former property is related to $\alpha $ -sensitivity. In order to demonstrate how these concepts can be used, we apply the results to the cases in which $\alpha $ is replaced with “normal” and the “cover-avoidance property.” We also suggest ways in which the theory can be developed further.  相似文献   

18.
Suppose that f : [0, 1] ?? [0, 2] is a continuous strictly increasing piecewise differentiable function, and define T f x :=?f(x) (mod 1). Let ${\beta \geq \sqrt[3]{2}}$ . It is proved that T f is topologically transitive if inf f???????? and ${f(0)\geq\frac{1}{\beta+1}}$ . Counterexamples are provided if the assumptions are not satisfied. For ${\sqrt[3]{2}\leq\beta < \sqrt{2}}$ and 0????????? 2 ? ?? it is shown that ??x?+??? (mod 1) is topologically transitive if and only if ${\alpha < \frac{1}{\beta^2+\beta}}$ or ${\alpha >2 -\beta-\frac{1}{\beta^2+\beta}}$ .  相似文献   

19.
20.
In this paper, we derive sharp estimates and asymptotic results for moment functions on Jacobi type hypergroups. Moreover, we use these estimates to prove a central limit theorem (CLT) for random walks on Jacobi hypergroups with growing parameters $\alpha ,\beta \rightarrow \infty $ . As a special case, we obtain a CLT for random walks on the hyperbolic spaces ${H}_d(\mathbb F )$ with growing dimensions $d$ over the fields $\mathbb F =\mathbb R ,\ \mathbb C $ or the quaternions $\mathbb H $ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号