首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular structure of the trans isomer of metal-free phthalocyanine (H2Pc) is determined using the gas electron diffraction (GED) method and high-level quantum chemical calculations. B3LYP calculations employing the basis sets 6-31G**, 6-311++G**, and cc-pVTZ give two tautomeric isomers for the inner H atoms, a trans isomer having D2h symmetry and a cis isomer having C2v symmetry. The trans isomer is calculated to be 41.6 (B3LYP/6-311++G**, zero-point corrected) and 37.3 kJ/mol (B3LYP/cc-pVTZ, not zero-point corrected) more stable than the cis isomer. However, Hartree-Fock (HF) calculations using different basis sets predict that cis is preferred and that trans does not exist as a stable form of the molecule. The equilibrium composition in the gas phase at 471 degrees C (the temperature of the GED experiment) calculated at the B3LYP/6-311++G** level is 99.8% trans and 0.2% cis. This is in very good agreement with the GED data, which indicate that the mole fraction of the cis isomer is close to zero. The transition states for two mechanisms of the NH tautomerization have been characterized. A concerted mechanism where the two H atoms move simultaneously yields a transition state of D2h symmetry and an energy barrier of 95.8 kJ/mol. A two-step mechanism where a trans isomer is converted to a cis isomer, which is converted into another trans isomer, proceeds via two transition states of C(s) symmetry and an energy barrier of 64.2 kJ/mol according to the B3LYP/6-311++G** calculation. The molecular geometry determined from GED is in very good agreement with the geometry obtained from the quantum chemical calculations. Vibrational frequencies, IR, and Raman intensities have been calculated using B3LYP/6-311++G**. These calculations indicate that the molecule is rather flexible with six vibrational frequencies in the range of 20-84 cm(-1) for the trans isomer. The cis isomer might be detected by infrared matrix spectroscopy since the N-H stretching frequencies are very different for the two isomers.  相似文献   

2.
The molecular structures of phthalocyaninatozinc (HPc-Zn) and hexadecafluorophthalocyaninatozinc (FPc- Zn) are determined using the gas electron diffraction (GED) method and high-level density functional theory (DFT) quantum chemical calculations. Calculations at the B3LYP/6-311++G** level indicate that the equilibrium structures of HPc-Zn and FPc-Zn have D4h symmetry and yield structural parameters in good agreement with those obtained by GED at 480 and 523 degrees C respectively. The calculated force fields indicate that both molecules are flexible. Normal coordinate calculations on HPc-Zn yield five vibrational frequencies (one degenerate) in the range 22-100 cm(-1), and ten vibrational frequencies ranging from 13 to 100 cm(-1) (three degenerate) for FPc-Zn. The high-level force field calculations confirm most of the previous vibrational assignments, and some new ones are suggested. The out-of-plane vibration of the Zn atom in HPc-Zn was studied in detail optimizing models in which the distance from the Zn atom to the two symmetry equivalent diagonally opposed N atoms (h) was fixed. The calculations indicate that the vibrationally activated vertically displacement of the Zn atom is accompanied by distortion of the ligand from D4h to C2v symmetry. The average height, h, at the temperature of the GED experiment was calculated to be 14.5 pm. Small structural changes indicate that a full F substitution on the benzo-subunits do not significantly alter the geometry, however there are indications that the benzo-subunits may shrink slightly with perfluorination.  相似文献   

3.
The molecular structures of dimethylamino[(dimethylboryl)methylamino]methylborane, Me2NBMeNMeBMe2 (1) and 1,1-bis(dimethylboryl)-2,2-dimethylhydrazine, (Me2B)2NNMe2 (2) have been determined by gas electron diffraction (GED), density functional theory calculations at the B3PW91/6-311++G** level and ab initio calculations at the MP2/6-311++G** level. 1 adopts an open structure similar to that of the isoelectronic hydrocarbon molecule permethylbutadiene; the central B-N bond distance at 148.0/149.3(7) pm (MP2/GED) corresponds to a single covalent N--B bond distance, the two terminal distances, 140.9/140.5(4) pm and 141.8/141.3(4) pm, correspond to the distance between N and B atoms joined by a covalent sigma-bond and a dative pi-bond. A closed form where the establishment of a dative bond between the terminal N and B atoms has led to the formation of a four-membered ring also corresponds to a minimum on the potential energy surface, but the energy is calculated to be 14.3 kJ mol(-1) higher at the MP2 level. This structure is also incompatible with the GED data. 2 adopts a structure in which a dative sigma-bond between the dimethylamino N atom and one of the boron atoms has led to the formation of a three-membered N(2)B ring. The dative sigma-bond distance is 165.5/164.0(13) pm, the two other bond distances in the ring are N-B=150.6/148.9(9) pm corresponding to a covalent sigma-bond and N-N=145.1/145.4(3) pm. The terminal B--N distance 139.6/138.9(9) pm is consistent with a covalent sigma-bond augmented by a dative pi-bond. An open Y-shaped structure also corresponds to a minimum on the potential energy surface, but the energy is 18.7 kJ mol(-1) higher (MP2) and it is incompatible with the GED data.  相似文献   

4.
The structural parameters of tin(II) phthalocyaninate PcSn and tin(IV) bis-phthalocyaninate Pc2Sn as well as of their cations are determined by B3LYP/SDD and PBE0/SDD quantum chemical methods. The PcSn molecule is characterized by C4v symmetry, and SnN bond lengths are 2.307/2.299 ? (B3LYP/PBE0). The Sn nucleus is by 1.11 ? (B3LYP, PBE0, single crystal X-ray diffraction analysis) higher than the plane of four neighboring nitrogen nuclei. The “hindered” configuration (D 4d symmetry) with a high (27–30 kcal/mole) internal rotation barrier corresponds to the Pc2Sn energy minimum. The calculated equilibrium lengths of eight equivalent SnN bonds of 2.366/2.347 (B3LYP/PBE0) are similar to the average SnN bond length of 2.347 ? (single crystal X-ray diffraction). Vertical and adiabatic ionization potentials are calculated: Iv 6.40/6.48 eV, IA 6.38/6.45 eV for PcSn and Iv 5.63/5.66 eV, IA 5.60/5.63 eV for Pc2Sn.  相似文献   

5.
Tautomeric and structural properties of benzoylacetone, CH(3)-C(O)-CH(2)-C(O)-C(6)H(5), have been studied by gas-phase electron diffraction (GED) and quantum chemical calculations (B3LYP and MP2 approximation with different basis sets up to aug-cc-pVTZ). Analysis of GED intensities resulted in the presence of 100% enol tautomer at 331(5) K. The existence of two possible enol conformers in about equal amounts is confirmed by both GED and quantum chemical results. In both conformers the enol ring possesses C(s) symmetry with a strongly asymmetric hydrogen bond. The experimental geometric parameters are reproduced very closely by the B3LYP/cc-pVTZ method.  相似文献   

6.
The thermal-average parameters of BBr3 at 21(1) °C were obtained from a conventional analysis of gas electron diffraction (GED) data (rg(B---Br) = 190.0(4) pm). The equilibrium structure and the force constants were refined from a joint analysis of the GED intensities and vibrational frequencies using different approximations. The simplest approximation (quadratic potential function in rectilinear coordinates) is suitable for the refinements of the equilibrium bond length (rhe(B---Br) = 189.6(4) pm) and the force constants of BBr3. The molecule is planar within the error limits. Quantum-chemical density-functional calculations supported planarity of the molecule.  相似文献   

7.
The geometric structure of malonamide, NH2C(O)-CH2-C(O)NH2, has been investigated by gas electron diffraction (GED) and quantum chemical calculations (B3LYP and MP2 approximations with 6-311++G(3df,pd) basis sets). Both GED and quantum chemistry result in the existence of a single diketo conformer in the gas phase. According to GED refinement this conformer possesses (sc,ac) conformation with one C=O bond in synclinal orientation (dihedral angle tau(O=C-C-C)=49.0(3.0) degrees) and the other C=O bond in anticlinal orientation (dihedral angle tau(O=C-C-C)=139.5(3.3) degrees). The experimental geometric parameters are reproduced very closely by the B3LYP method.  相似文献   

8.
The molecular structure and conformational properties of N-pentafluorosulfur(sulfuroxide difluoride imide), SF5N=S(O)F2, have been studied by vibrational spectroscopy (IR (gas) and Raman (liquid)), by gas electron diffraction (GED), and by quantum chemical calculations (MP2 and B3LYP with (6-31G(d) and 6-311+G(2df) basis sets). According to GED, the prevailing conformer possesses a syn structure (N-SF5 bond synperiplanar with respect to the bisector of the SF2 group). Splitting of the symmetric N=S=O stretching vibration in gas and liquid spectra demonstrates the presence of a second conformer (11(5)%) with anticlinal orientation of the N-SF5 bond according to quantum chemical calculations. The geometric structure, conformational properties, and vibrational frequencies are well reproduced by quantum chemical calculations.  相似文献   

9.
The conformational properties and geometric structures of fluoroformic acid anhydride, FC(O)OC(O)F, have been studied by vibrational spectroscopy, gas electron diffraction (GED), single-crystal X-ray diffraction, and quantum chemical calculations (HF, MP2, and B3LYP methods with 6-31G* and B3LYP/6-311+G* basis sets). Satellite bands in the IR matrix spectra, which increase in intensity when the matrix gas mixture is heated prior to deposition as a matrix, indicate the presence of two conformers at room temperature. According to the electron diffraction analysis, the prevailing conformer is of C(2) symmetry with both C=O bonds synperiplanar with respect to the opposite C-O bond ([sp, sp] conformer). The minor conformer [15(5)% from IR matrix and 6(11)% from GED] is predicted by quantum chemical calculations to possess an [sp, ac] structure. FC(O)OC(O)F crystallizes in the orthorhombic system in the space group P2(1)2(1)2(1) with a = 6.527(1) angstroms, b = 7.027(1) angstroms, and c = 16.191(1) angstroms and four formula units per unit cell. In the crystal, only the [sp, sp] conformer is present, and the structural parameters are very similar to those determined by GED.  相似文献   

10.
The molecular structure of axial and equatorial conformers of 1-trifluoromethyl-1-silacyclohexane, (C5H10SiHCF3), as well as the thermodynamic equilibrium between these species was investigated by means of gas electron diffraction (GED), dynamic nuclear magnetic resonance (DNMR) spectroscopy, and quantum chemical calculations (B3LYP, MP2, and CBS-QB3). According to GED, the compound exists as a mixture of two Cs symmetry conformers possessing the chair conformation of the six-membered ring and differing in the axial or equatorial position of the CF3 group (axial=58(12) mol%/equatorial=42(12) mol%) at T=293 K. This result is in a good agreement with the theoretical prediction. This is, however, in sharp contrast to the conformational properties of the cyclohexane analogue. The main structural feature for both conformers is the unusually long exocyclic bond length Si--C 1.934(10) A. A low-temperature 19F NMR experiment results in an axial/equatorial ratio of 17(2) mol%:83(2) mol% at 113 K and a DeltaG (not equal) of 5.5(2) kcal mol-1. CBS-QB3 calculations in the gas-phase and solvation effect calculations using the PCM(B3LYP/6-311G*) and IPCM(B3LYP/6-311G*) models were applied to estimate the axial/equatorial ratio in the 100-300 K temperature range, which showed excellent agreement with the experimental results. The minimum energy pathways for the chair-to-chair inversion of trifluoromethylsilacyclohexane and methylsilacyclohexane were also calculated using the STQN(Path) method.  相似文献   

11.
The molecular structures of two carbaboranes, closo-2,3-C(2)B(9)H(11) and nido-2,9-C(2)B(9)H(13), were determined experimentally for the first time using gas-phase electron diffraction (GED). For closo-2,3-C(2)B(9)H(11), a model with C(2)(v)() symmetry was refined to give C-B bond distances ranging 158.3-167.0 pm and B-B distances ranging 177.4-200.0 pm. The structure of nido-2,9-C(2)B(9)H(13) was refined using a model with C(s)() symmetry to give C-B bond lengths ranging 160.3-171.9 pm and B-B lengths ranging 173.0-196.1 pm. Ab initio computations (up to MP2/6-311+G) were also carried out on these and the related nido-7,8-C(2)B(9)H(13), which was not sufficiently stable to allow determination of its molecular structure by GED.  相似文献   

12.
The microwave spectrum of 1-thia-closo-decaborane(9), 1-SB(9)H(9), has been investigated in the 12-61 GHz spectral region. The molecule has C(4v) symmetry. The spectra of five isotopomers have been assigned, and a precise substitution structure of the non-hydrogen atoms has been determined. It was found that the axial sulfur atom causes a substantial expansion of the B(4) belt adjacent to sulfur and hence leads to a significant distortion from a regular bicapped square antiprismatic structure. The experimental work has been supplemented by high-level ab initio (MP2/6-311G**) and density functional theory calculations (B3LYP/6-311G** and B3LYP/cc-pVTZ). The agreement between the substitution structure and the two DFT calculations is very good in each case. The agreement is considerably poorer for the MP2/6-311G** calculations, particularly for the sulfur-boron bond length.  相似文献   

13.
The molecular structure, vibrational spectrum, standard thermodynamic functions, and enthalpy of formation of free base phthalocyanine (Pc) have been studied using the density functional theory B3LYP procedure, as well as the ab initio Hartree–Fock method. Various basis sets 3‐21G, 6‐31G*, and LANL2DZ have been employed. The results obtained at various levels are discussed and compared with each other and with the available experimental data. It is shown that calculations performed at the Hartree–Fock level cannot produce a reliable geometry and related properties such as the dipole moment of Pc and similar porphyrin‐based systems. Electron correlation must be included in the calculations. The basis set has comparatively less effect on the calculated results. The results derived at the B3LYP level using the smaller 3‐21G and LANL2DZ basis sets are very close to those produced using the medium 6‐31G* basis set. The geometry of Pc obtained at the B3LYP level has D2h symmetry and the diameter of the central macrocycle is about 4 Å. The enthalpy of formation of Pc in the gas phase has been predicted to be 1518.50 kJ/mol at the B3LYP/6‐311G(2d,2p)//B3LYP/6‐31G* level via an isodesmic reaction. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

14.
The molecular structures of Zr[(mu-H)(3)BH](4) and U[(mu-H)(3)BH](4) have been investigated by density functional theory (DFT) calculations and gas electron diffraction (GED). The triply bridged bonding mode of the tetrahydroborate groups in the former is confirmed, but both DFT calculations and GED structure refinements indicate that the BH(4) groups are rotated some 12 degrees away from the orientation in which the three bridging B-H bonds are staggered with respect to the opposing ZrB(3) fragment. As a result the symmetry of the equilibrium conformation is reduced from T(d) to T. Bond distances and valence angles are as follows (DFT/GED): Zr-B = 232.2/232.4(5) pm; Zr-H(b) = 214.8/214.4(6) pm; B-H(b) = 125.3/127.8(8) pm; B-H(t) = 119.4/118.8(17) pm; angle ZrBH(b) = 66.2/65.6(3) degrees; the smallest dihedral angle of type tau(BZrBH(b)) = 48/45(2) degrees. DFT calculations on Hf(BH(4))(4) indicate that the structure of this molecule is very similar to that of the Zr analogue. Matrix-isolation IR spectroscopy and DFT calculations on U(BH(4))(4) show that while the polymeric solid-state structure is characterized by terminal triply bridging and metal-metal bridging bidentate BH(4) groups, all BH(4) groups are triply bridging in the gaseous monomer. Calculations with one of the two nonbonding 5f electrons on U occupying an a(1) and the other distributed equally among the three t(2) orbitals indicate that the equilibrium conformation has T(d) symmetry, i.e. that the three B-H(b) bonds of each tetrahydroborate group are exactly staggered with respect to the opposing UB(3) fragment with tau(BUBH(b)) = 60 degrees. Calculations including spin-orbit interactions indicate that Jahn-Teller distortions from T(d) symmetry are either absent or very small. The best agreement between observed and calculated GED intensity data was obtained for a model of T(d) symmetry, but models of T symmetry with dihedral angles tau(BUBH(b)) > 42 degrees cannot be ruled out. Bond distances and valence angles are as follows (DFT/GED): U-B = 248.8/251.2(4) pm; U-H(b) = 227.7/231.5(6) pm; B-H(b) = 126.0/131.6(5) pm, B-H(t) = 119.5/117.8(11) pm; angle UBH(b) = 65.6/63.1(3) degrees. It is suggested that the different equilibrium conformations of the three molecules are determined primarily by repulsion between bridging H atoms in different tetrahydroborate groups.  相似文献   

15.
The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.  相似文献   

16.
3,5-Difluoronitrobenzene (3,5-DFNB) and 2,6-difluoronitrobenzene (2,6-DFNB) have been studied by gas-phase electron diffraction (GED), MP2 ab initio, and by B3LYP density functional calculations. Refinements of r h1 and r e static and r h1 dynamic GED models were carried out for both molecules. Equilibrium r e structures were determined using anharmonic vibrational corrections to the internuclear distances ( r e - r a) calculated from B3LYP/cc-pVTZ cubic force fields. 3,5-DFNB possesses a planar structure of C 2 v symmetry with the following r e values for bond lengths and bond angles: r(C-C) av = 1.378(4) A, r(C-N) = 1.489(6) A, r(N-O) = 1.217(2) A, r(C-F) = 1.347(5) A, angleC6-C1-C2 = 122.6(6) degrees , angleC1-C2-C3 = 117.3(3) degrees , angleC2-C3-C4 = 123.0(3) degrees , angleC3-C4-C5 = 116.9(6) degrees , angleC-C-N = 118.7(3) degrees , angleC-N-O = 117.3(4) degrees , angleO-N-O = 125.5(7) degrees , angleC-C-F = 118.6(7) degrees . The uncertainties in parentheses are three times the standard deviations. As in the case of nitrobenzene, the barrier to internal rotation of the nitro group in 3,5-DFNB, V 90 = 10 +/- 4 kJ/mol, is substantially lower than that predicted by quantum chemical calculations. The presence of substituents in the ortho positions force the nitro group to rotate about the C-N bond, out of the plane of the benzene ring. For 2,6-DFNB, a nonplanar structure of C 2 symmetry with a torsional angle of phi(C-N) = 53.8(14) degrees and the following r e values for structural parameters was determined by the GED analysis: r(C-C) av = 1.383(5) A, r(C-N) = 1.469(7) A, r(N-O) = 1.212(2) A, r(C-F) = 1.344(4) A, angleC6-C1-C2 = 118.7(5) degrees , angleC1-C2-C3 = 121.2(2) degrees , angleC2-C3-C4 = 119.0(2) degrees , angleC3-C4-C5 = 121.1(4) degrees , angleC-C-N = 120.6(2) degrees , angleC-N-O = 115.7(4) degrees , angleO-N-O = 128.6(7) degrees , angleC-C-F = 118.7(5) degrees . The refinement of a dynamic model led to barriers V 0 = 16.5 +/- 1.5 kJ/mol and V 90 = 2.2 +/- 0.5 kJ/mol, which are in good agreement with values predicted by B3LYP/6-311++G(d,p) and MP2/ cc-pVTZ calculations. The values of C-F bond lengths are similar in both molecules. This is in contrast to the drastic shortening of the C-F bond in the ortho position in 2-fluoronitrobenzene compared to the C-F bond length in the meta and para position in 3- and 4-fluoronitrobenzene observed in an earlier GED study.  相似文献   

17.
Fluoroformyl trifluoroacetyl disulfide, FC(O)SSC(O)CF3, is prepared by quantitative reaction between FC(O)SCl and CF(3)C(O)SH. The conformational properties and geometric structure of the gaseous molecule have been studied by vibrational spectroscopy (IR(gas), Raman(liquid), IR(matrix)), gas electron diffraction (GED), and quantum chemical calculations (B3LYP and MP2 methods). The disulfide bond length derived from the GED analysis amounts 2.023(3) Angstroms, and the dihedral angle around this bond, phi(CS-SC), is 77.7(21) degrees, being the smallest dihedral angle measured for noncyclic disulfides in the gas phase. The compound exhibits a conformational equilibrium at room temperature having the most stable form C(1) symmetry with a synperiplanar (sp-sp) orientation of both carbonyl groups with respect to the disulfide bond. A second form was observed in IR spectra of the Ar matrix isolated compound at cryogenic temperatures, corresponding to a conformer that possess the carbonyl bond of the FC(O) moiety in antiperiplanar position with respect to the S-S single bond (ap-sp). A DeltaH degrees = - = 1.34(11) kcal/mol has been determined by IR(matrix) spectroscopy. The structure of single crystal of FC(O)SSC(O)CF3 was determinate by X-ray diffraction analysis at low temperature using a miniature zone melting procedure. The crystalline solid (monoclinic, P2(1)/n, a = 5.240(4)Angstroms, b = 23.319(17)Angstroms, c = 6.196(4)Angstroms, beta = 113.14(3) degrees) consists exclusively of the (sp-sp) conformation. The geometrical parameters agree with those obtained for the molecule in the gas phase.  相似文献   

18.
The molecular structure and conformational properties of benzenesulfonamide, C6H5SO2NH2, were studied by gas electron diffraction (GED) and quantum chemical methods (MP2 and B3LYP with different basis sets). The calculations predict the presence of two stable conformers with the NH2 group eclipsing or staggering the SO2 group. The eclipsed form is predicted to be favored by about 0.5 kcal/mol. According to GED, the saturated vapor over solid benzenesulfonamide at a temperature of 150(5) degrees C consists of the eclipsed conformer. The GED intensities, however, possess a very low sensitivity toward the vapor composition, and contributions of the anti conformer of up to 75% (at the 0.05 level of significance) or up to 55% (at the 0.25 level of significance) cannot be excluded. The molecule possesses C(sS) symmetry with the S-N bond perpendicular to the ring plane.  相似文献   

19.
The vapour over solid SeBr(4) at 10 degrees C was investigated with a combined gas-phase electron diffraction/mass spectrometric (GED/MS) method. The composition of the vapour derived from the mass spectra (43% SeBr(2), 56.7% Br(2) and 0.3% Se(2)Br(2)) was in agreement with the composition obtained from the analysis of the simultaneously recorded GED intensities (41(3)% SeBr(2), 59(3)% Br(2)). The GED study results in the following geometric parameters (r(g), angle(g) values with total uncertainties): Se-Br = 2.306(5) A and Br-Se-Br = 101.6(6) degrees . Most quantum chemical approximations (B3LYP, MP2, CCSD and CCSD(T) with relativistic effective core potentials and cc-pVTZ as well as aug-cc-pVTZ basis sets for the outer shells) overestimate the Se-Br bond length by 0.01 to 0.03 A. All methods reproduce the bond angle correctly, except for the B3LYP method. Gas phase vibrational frequencies estimated from experimental vibrational amplitudes agree well with those measured by Raman spectroscopy in acetonitrile solutions. All computational methods overestimate vibrational frequencies, especially that for the symmetric stretch vibration, by about or 8 to 13%.  相似文献   

20.
The geometric structure and conformational properties of ((fluoroformyl)imido)(trifluoromethyl)sulfur fluoride, FC(O)N = S(F)CF3, are investigated by gas electron diffraction (GED) experiments, IR (gas) spectroscopy, and quantum chemical calculations (HF, MP2, and B3LYP with 6-31G* basis sets). The GED intensities are reproduced best with a mixture of 79(12)% trans-syn and 21(12)% cis-syn conformers. "Trans/cis" describes the orientation around the S=N double bond (FC(O) group relative to sulfur substituents), and "syn" refers to the orientation of the C=O bond relative to the S=N bond. From the intensities of the C=O bands in the IR (gas) spectrum, a composition of 86(8)%:14(8)% is derived. These ratios correspond to delta G0(GED) = 0.79(36) and delta G0(IR) = 1.09(35) kcal mol-1. The preference of a trans structure, around the S=N double bond is unexpected, since all imidosulfur compounds studied thus far possess a cis configuration. The conformational properties are reproduced qualitatively correctly by all theoretical calculations. The predicted energy differences delta E(HF) = 2.41, delta E(MP2) = 0.64, and delta E(B3LYP) = 0.28 kcal mol-1 are larger or slightly smaller than the experimental values. Additional theoretical calculations (B3LYP) for several imidosulfur compounds reveal that only FC(O)N=S(F)CF3, with mixed substitution at sulfur and the FC(O) group bonded to nitrogen, prefers the trans structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号