首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polysaccharides (PSs), such as dextran, yeast mannan, starch and amylose, were modified with complexes of six‐valent osmium with nitrogen ligands [Os(VI)L] and voltammetric behavior of PS‐Os(VI)L adducts was studied at mercury and carbon electrodes. Using Os(VI)temed as a modification agent and adsorptive transfer stripping (ex situ) method it was possible to determine PSs at submicromolar concentrations directly in the reaction mixture in an excess of monomeric glucose or sucrose both at Hg and carbon electrodes. Conventional (in situ) PS determination in the reaction mixture was possible only with mercury electrodes. The above methods have great potentiality in biological research.  相似文献   

2.
Ribose at the 3′-end of oligonucleotides (oligos) selectively modified by Os(VI)2,2′-bipyridine (bipy) produced two CV redox couples at pyrolytic graphite electrode. Using square wave voltammetry (SWV) 22-mer oligos can be detected down to 250 nM. At mercury electrodes the Os(VI)bipy-oligo adducts produced an electrocatalytic peak at ~?1.2 V allowing their determination down to picomolar concentrations. High specificity of Os(VI)bipy for ribose in nucleic acids and high sensitivity of the determination at mercury and solid amalgam electrodes give promise for new efficient methods of microRNA determination.  相似文献   

3.
Present proteomics and biomedicine require sensitive analytical methods for all proteins. Recent progress in electrochemical analysis of peptides and proteins based on their intrinsic electroactivity is reviewed. Tyrosine and/or tryptophan‐containing proteins are oxidizable at carbon electrodes. At mercury electrodes all peptides and proteins (about 13 peptides and >25 proteins were tested) produce chronopotentiometric peak H at nanomolar concentrations. This peak is sensitive to changes in protein structure. Microliter sample volumes are sufficient for the analysis. Electrochemical methods can be used in studies of nucleic acid‐protein interactions and can be applied in biomedicine. Examples of such applications in neurogenerative diseases and cancer are presented.  相似文献   

4.
We show that polysaccharides (PSs, such as dextran and mannan) can be chemically modified by Os(VI) complexes, yielding electroactive adducts. Os(VI) complexes with different ligands (e.g., temed and 2,2′‐bipyridine) produced at pyrolytic graphite electrodes redox couples at different potentials suitable for “multicolor” labeling of PSs and for studies of ligand exchange kinetics. PS‐Os(VI)L adducts can be determined not only in their purified forms but also in the reaction mixtures.  相似文献   

5.
Cylindrical gold film micro-electrodes are easily produced by plasma-sputtering of gold onto carbon fiber electrodes. The micro-electrodes produced were found to maintain their cylindrical geometry indefinitely, unlike gold wire electrodes of similar dimensions. Application of these electrodes in differential-pulse anodic stripping voltammetry provides a method for quantifying trace levels of mercury(II). Up to 100 μg l?1 Hg(II) the area of the mercury stripping peak varied linearly with mercury concentration; the detection limit was 3.7 μg l?1. With more than 100 μg l?1 Hg(II) a new mercury stripping peak grows in at less positive potentials; its peak height is linear with Hg(II) concentration.  相似文献   

6.
方波伏安法测定食盐中的碘酸根离子   总被引:2,自引:0,他引:2  
报道了一种测定碘酸根离子含量的方法。在 0 .5mol/L Na Cl介质中 ,碘酸根离子在汞膜电极上于 - 1 .2 5V( vs.Ag/Ag Cl)左右产生一灵敏的方波伏安峰 ,峰高与碘酸根离子浓度在一定范围内呈良好的线性关系 ,方法检出限为1 .0× 1 0 - 7mol/L,已用于加碘食盐中碘酸根含量的测定。  相似文献   

7.
The application of electrodes modified by tri-n-octylphosphine oxide (TOPO) to the determination of uranium in aqueous solutions is investigated. Selective preconcentration of uranium(VI) by chemical reaction with the modifying molecule is followed by cyclic voltammetry. A hanging mercury drop electrode (HMDE) can be modified easily but the reproducibility of results is not good. When a TOPO-modified glassy carbon electrode is used, uranium(VI) can be preconcentrated from stirred solutions, and the cathodic voltammograms show an increase of current or a peak at about -0.75 V vs. SCE, depending on the uranium concentration of the solution. The effects of preconcentration time, pH and electrode potential during the preconcentration are discussed. The detection limit is in the 10-9 M range for 45 min of preconcentration. The procedure is fairly selective for uranyl ions, but oxidizing agents interfere. Some tests on sea water are reported.  相似文献   

8.
As a strong reducing radical, carbon dioxide anion radical(CO2·-) can be generated by initiating sulfate radical(SO4·-) in the presence of formate anions(FA) for Cr(VI) reduction. Moreover, activated carbon(AC)-catalyzed persulfate(PS) oxidation is an economically justifiable, environmentally friendly, and easy-to-scale-up method to produce SO4·-. The complete removal of Cr(VI) was achieved within 280 min for an initial Cr(VI) concentration of 50 mg/L under the optional condition of c(AC)=1 g/L, [PS]0=10 mmol/L, [FA]0=10 mmol/L, T=30℃, and unadjusted pH. When the molar ratio of FA to PS was greater than or equal to 1, the system maintained a strong reduction state. The mechanism investigation confirmed that FA was converted to carboxyl anion radical(CO2·-) as the predominant radical for Cr(VI) reduction. This novel system may offer a potential platform technology for Cr(VI) wastewater treatment.  相似文献   

9.
Polarographic (d.c.) measurements showed that complex ions of uranium(VI) with catechol adsorb on the dropping mercury electrode. This effect is used to determine uranium(VI) directly in sea water. Optimal conditions include pH 6.8, 2 × 10?3 M catechol, and a collection potential between ?0.1 and ?0.4 V (vs. Ag/AgCl) at a hanging mercury drop electrode. The cathodic scan is made with the linear-scan or differential-pulse mode (d.p.c.s.v.). The detection limit with the d.p.c.s.v, mode is 3 × 10?10 M after a collection period of 2.5 min. Between pH 6 and 8, the peak height increases with pH and with catechol concentration up to 5 × 10?3 M. There is linear relationship between the collection time and the measured peak height until the drop surface becomes saturated. With a collection period of 3 min, the reduction current increases linearly with the metal concentration up to about 5 × 10?3 M U(VI). The maximum adsorption capacity of the mercury drop is 4.4 × 10?10 mol cm2; each complex ion then occupies 0.38 nm2, equivalent to the size of about one catechol molecule. Interference by high concentrations of Fe(III) is overcome by selectively adsorbing U(VI) at a collection potential near the reduction potential of Fe(III). Organic surfactants reduce the peak height for uranium by up to 75% at unnaturally high concentrations only (4 mg l?1 Triton X-100). Competition by high concentrations of Cu(II) for space on the surface of the drop is eliminated by addition of EDTA.  相似文献   

10.
Tsai MC  Chen PY 《Talanta》2008,76(3):533-539
The voltammetric behavior of hexavalent chromium species (Cr(VI)) was respectively studied at ITO, bulk Au, and Au-electrodeposited electrodes in 0.01 M NaCl aqueous solutions containing 0.01 M HCl. It was found that performance degradation of the ITO electrodes toward the reduction of Cr(VI) can be suppressed by modifying the electrode surface with gold nanoparticles (AuNPs), which were formed on ITO electrodes by potential-sweeping or potential-step electrodeposition in a 0.01 M Na(2)SO(4) solution containing 1 mM HAuCl(4) x 3 H(2)O and 0.01 M H(2)SO(4). After the modification, the surface of ITO electrodes turned to the characteristically red or blue color exhibited by AuNPs. The gold nanoparticle-electrodeposited indium-tinoxide electrode (AuNP-ITO) demonstrates unique catalytic behavior, higher sensitivity and stability in the reduction of Cr(VI). Cr(VI) species was detected by either cyclic voltammetry or hydrodynamic amperometry. By cyclic voltammetry, the dependence of cathodic peak current on concentration was linear from 5 to 100 microM with a detection limit of 2 microM (sigma=3), and linearity was obtained from 0.5 to 50 microM by hydrodynamic amperometry where a constant potential of +0.2V (vs. Ag/AgCl) was applied and a batch-injection cell was employed. For hydrodynamic amperometry, the detection limit was 0.1 microM (sigma=3).  相似文献   

11.
Polysaccharides and oligosaccharides were modified with Os(VI)pyridine complex followed by ligand exchange with different ligands such as 2,2′‐bipyridine or N,N,N′,N′‐tetramethylethylenediamine. The time of the modification was much shorter (taking about 15 min) then direct modification with the given Os(VI) complex. The resulting saccharide adducts were analyzed by voltammetric methods at carbon and mercury electrodes. The results showed that the proposed technique gives promise for a new approach to analysis of glycoproteins.  相似文献   

12.
Carbohydrate components in glycoproteins play a critical role in health and disease and specificity of glycoprotein biomarkers can be greatly enhanced by analysis of their sugar components containing frequently different isomers. We show that two glycan isomers, 2,3-sialyllactose and 2,6-sialyllactose (important in cancer), can be distinguished voltammetrically after their modification with osmium(VI) complexes. Using SWV at different frequencies and CV at different scan rates we found conditions for simple discrimination between these isomers at mercury and carbon electrodes.  相似文献   

13.
Summary Different polarographic and voltammetric techniques for the determination of molybdenum at the trace level have been investigated. As a result, a new high-sensitivity procedure for the determination of molybdenum by adsorptive stripping voltammetry was developed. The method is based on the reaction of molybdenum(VI) with 2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone (chloranilic acid) to produce a complex which is absorbed onto mercury at –0.20 V (vs. Ag/AgCl, 3 mol/l KCl) from pH 2.7 solution. The cathodic stripping peak at –0.62 V can be used to determine molybdenum with a detection limit of 0.02 ng/ml after 5 min deposition time. The relative standard deviation for the determination of 0.1 ng/ml Mo after 5 min stirred collection was 6.6%. Interference from various inorganic ions and organic substances are reported. The method was applied to the determination of molybdenum traces in waters; interfering organic substances in polluted waters were destroyed by oxidative digestion in a microwave oven.  相似文献   

14.
Voltammetric behavior of oligodeoxynucleotide (ODN) 5′‐T40 (GAA)7–3′ end‐labeled with osmium tetroxide,2,2‐bipyridine [Os(VIII)bipy] was compared with Os(VIII)bipy‐base‐ and with Os(VI)bipy‐sugar‐modified thymine ribosides. Cyclic voltammograms of Os(VIII)bipy‐modified ODN at mercury and carbon electrodes were similar but not identical to those of Os(VIII)bipy‐modified thymine riboside. Treatment of the ODN with Os(VI)bipy did not result in the ODN modification, in agreement with the known specificity of the reagent to the sugar cis‐diols. We show that in addition to mercury and carbon electrodes, the gold electrode can be used to detect Os(VIII)bipy‐labeled ODN. Comparison of voltammetric behavior of end‐labeled ODN using three types of electrodes most frequently used in DNA analysis may help to optimize electrochemical DNA sensors.  相似文献   

15.
Lin L  Lawrence NS  Thongngamdee S  Wang J  Lin Y 《Talanta》2005,65(1):144-148
A sensitive adsorptive stripping voltammetric protocol at a bismuth-coated glassy-carbon electrode for trace measurements of chromium (VI) in the presence of diethylenetriammine pentaacetic acid (DTPA) is described. The new protocol is based on accumulation of the Cr-DTPA complex at a preplated bismuth film electrode held at −0.80 V, followed by a negatively-going square-wave voltammetric waveform. Factors influencing the stripping performance including the film preparation, solution pH, DTPA and nitrate concentrations, deposition potential and deposition time, have been optimized. The resulting performance compares well with that observed for analogous measurements at mercury film electrodes. A preconcentration time of 7 min results in a detection limit of 0.3 nM Cr(VI) and after 2 min a relative standard deviation at 20 nM of 5.1% (n = 25). Applicability to river water samples is demonstrated. The attractive behavior of the new “mercury-free” chromium sensor holds great promise for on-site environmental and industrial monitoring of chromium (VI). Preliminary data in this direction using bismuth-coated screen-printed electrodes are encouraging.  相似文献   

16.
Summary The compound disodium-1,8-dihydroxy-naphthalene-3,6-disulphonate (sodium salt of chromotropic acid) is employed as a colorimetric reagent for titanium. It is also known to produce coloured complexes with chromium(VI), vanadium and uranium. In the present paper the formation of colour with forty metallic ions has been studied qualitatively, in neutral as well as in alkaline and acidic media. It has been found that the reagent yields coloured complexes with mercury(I), tin(IV), platinum(IV), gold(III), tellurium(VI), molybdenum(VI), iron(III), aluminium(III), chromium(III), and uranyl(II) besides those recorded above.The colour reactions are particularly sensitive to uranyl(II), iron(III), mercury(I), tin(IV), gold(III) und molybdenum(VI).  相似文献   

17.
This article reviews the voltammetric methods of chromium determination, including adsorptive and catalytic adsorptive stripping voltammetry at liquid mercury, metallic films, and modified carbon paste electrodes. The principle applications of the catalytic adsorptive stripping voltammetric method of chromium(VI) determination in the presence of DTPA and nitrate, most useful in the analysis of chromium traces and its speciation, is presented in detail. Special emphasis is put on the presentation and characterization of the voltammetric procedures which make it possible to conduction speciation studies of chromium(VI) in the presence of a great excess of chromium(III) and surfactants. This survey is based on 173 articles.  相似文献   

18.
Silver solid amalgam electrode (AgSAE) was used for differential pulse voltammetric (DPV) measurements of cysteine and cysteine-containing peptides, glutathione, gamma-Glu-Cys-Gly and phytochelatin (gamma-Glu-Cys)(3)-Gly (PC3), in the presence of Co(II) ions. It had been established earlier that cysteine-containing peptides and proteins catalyze hydrogen evolution at mercury electrodes in presence of cobalt salts; these processes are known as the Brdicka reaction. DPV signals measured with the AgSAE, the surfaces of which had been modified by mercury meniscus or mercury film, were qualitatively the same as those obtained with the hanging mercury drop electrode (HMDE). With these electrodes the number and the intensity of Brdicka signals of cysteine, glutathione and PC3 differed, making a distinction among them possible. On the other hand, with the polished silver solid amalgam electrode (the surface of which was completely free of liquid mercury) all three compounds produced only one but strikingly intense peak in the region of Brdicka reaction. Using this signal, cysteine, glutathione as well as PC3 could be determined at 10(-8)M level, representing sensitivity up to 2 orders of magnitude better than attained with the mercury-modified AgSAEs or HMDE.  相似文献   

19.
Zhao Z  Pei J  Zhang X  Zhou X 《Talanta》1990,37(10):1007-1010
A differential pulse stripping voltammetry method for the trace determination of molybdenum(VI) in water and soil has been developed. In 0.048M oxalic acid and 6 x 10(-5)M Toluidine Blue (pH 1.8) solution, Mo(V), the reduction product of Mo(VI) in the sample solution, can form a ternary complex, which can be concentrated by adsorption on a static mercury drop electrode at -0.1 V (vs. Ag/AgCl). The adsorbed complex gives a well-defined cathodic stripping current peak at -0.30 V, which can be used for determining Mo(VI) in the range 5 x 10(-10)-7 x 10(-9)M, with a detection limit of 1 x 10(-10)M (4 min accumulation). The method is also selective. Most of the common ions do not interfere but Sn(IV) and large amounts of Cu(2+), Ag(+) and Au(3+) affect the determination.  相似文献   

20.
Neto MM  Rocha MM  Brett CM 《Talanta》1994,41(9):1597-1601
An adsorptive stripping voltammetry method for the determination of traces of molybdenum(VI) in flowing solution at a wall-jet electrode sensor has been developed. After adsorption of a molybdenum complex on a wall-jet mercury film electrode, the complex is reduced by a square wave scan. More satisfactory results were obtained using 8-hydroxyquinoline as a complexing agent in nitrate medium than using Toluidine Blue in oxalic acid. Enhanced sensitivity was achieved by optimizing adsorption time and square wave parameter values. The detection limit of Mo(VI) was found to be at the nanomolar level. Interference of some other metallic species in the determination of nanomolar Mo(VI) was also investigated: Cu(II), Zn(II), Mn(II) do not interfere at 10 muM, whereas 1 muM FeEDTA(-) causes an increase in peak current. This iron interference was removed effectively with citric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号