首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.

  相似文献   

2.
The thermal properties and morphology of ultradispersed polytetrafluoroethylene, as well as those of its soluble and insoluble fractions isolated in supercritical carbon dioxide at 75°C and 30 MPa, are investigated. It is found that, in fact, the soluble fraction contains low-molecular-mass and high-molecular-mass fractions that have been previously obtained via pyrolysis in the temperature ranges 50–150 and 120–300°C, respectively. With the use of thermogravimetric analysis, differential scanning calorimetry, and powder X-ray diffraction, it is shown that the initial polymer and both fractions have semicrystalline structures and that the crystallinity of the insoluble fraction is weaker than that of the soluble fraction because of its higher molecular mass. The crystal lattice of the polymer is monoclinic with equal parameters а and с and angle β being approximately 120°. The soluble fraction does not show phase transitions during heating to the onset of mass loss. As a result of separation of the low-molecular-mass fraction, the phase-transition temperature increases from–33 to–20°C.  相似文献   

3.
Microsized spherical core-shell particles consisting of hydrocarbon cores encapsulated into fluoropolymer shells are obtained in supercritical carbon dioxide. Paraffins serve as a core material, while the polymer shell is formed from ultradispersed polytetrafluoroethylene. The morphology and molecular structure in the bulk and on the surface of the particles and the influence of conditions of particle formation on the shell thickness and the thermal properties of the materials are studied. The materials are composites comprised of paraffin cores coated with shells of loosened globular fluoropolymer particles with sizes of 0.2–1.7 μm. The shells is built of low- and high-molecular-mass fractions consisting of CF3(CF2)nCF3 molecular chains with different lengths. The shell thickness is governed by preparation conditions, exposure time, and the percentage of the polymer in the initial dispersion.  相似文献   

4.
Electron radiation effects (40 mrad, 70 mrad, and 100 mrad) on the molecular and supramolecular structure and morphology of ultradisperse polytetrafluoroethylene obtained by the thermogas dynamic (TGD) method were studied by IR and EPR spectroscopy, X-ray phase analysis, and atomic force microscopy. Irradiation of ultradisperse powder in air leads to oxidized polymer forms due to the terminal carbonyl groups and stable peroxide radicals that appear in the structure. Fast electron radiation in doses of up to 100 mrad did not change the polymer crystallinity and particle entity, while thin films on the surface of ultradisperse polytetrafluoroethylene powder decomposed.  相似文献   

5.
Silicone oil samples were characterized by supercritical fluid chromatography (SFC), matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI--TOF MS), and their off-line combination. SFC was used to separate samples of silicone oils on micropacked capillary columns. The fractions for the identification studies were obtained from SFC runs at defined time intervals, when the restrictor was pulled out from the chromatographic flame ionization detector (FID) and inserted into a glass vial with acetone. MALDI--TOF MS was used for the identification of individual oligomers in the fractions separated. The molecular mass distributions determined based on SFC and MALDI--TOF MS measurements were compared. From this comparison, it follows that the results are in good agreement. However, certain differences were observed: MALDI--TOF MS was capable of detecting somewhat larger oligomers than the SFC-FID, but the lower molecular mass oligomers were not present in the MALDI spectra. Differences in the region of lower molecular masses can be explained by evaporation of the more volatile low molecular mass oligomers resulting from heating of the sample during the MALDI--TOF MS measurements as a result of the absorption of the laser shot energy. The fact that no high mass discrimination effects of the MALDI--TOF MS measurements, compared with SFC, were observed is very promising for further applications of MALDI--TOF MS in characterizing synthetic polymers of moderate polydispersity.  相似文献   

6.
The cross-linking structure of the ultra violet (UV)-cured resin prepared from dipentaerithritol hexacrylate (DPHA) was characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with supercritical methanolysis. The MALDI-mass spectrum of the decomposition products obtained by supercritical methanolysis contained a series of peaks of sodium-cationized methyl acrylate (MA) oligomers up to around m/z = 4000 formed through selective cleavage and methylation occurred at ester linkages in UV-cured DPHA. Furthermore, in order to observe widely distributed sequence lengths in the cross-linking junctions, the decomposed products of the cured resin were then fractionated using size exclusion chromatography followed by the MALDI-MS measurements of the individual fractions. The MALDI-mass spectra of the lower molar mass fractions mainly consisted of a series of peaks of MA oligomers around m/z values of several thousands, whereas those of higher molecular weight showed a broad peak up to m/z ca. 180000. The observed distributions of the supercritical methanolysis products suggested that the network junctions in the given UV-cured resin were composed of up to around 2000 acrylate units.  相似文献   

7.
A low-molecular-weight polytetrafluoroethylene coating deposited onto a polyester textile material from supercritical carbon dioxide with the aim to make the material hydrophobic was analyzed. The hydrophobic properties of the coating were examined in comparison with those of the hydrophobizing agent produced by Nuva (Switzerland).  相似文献   

8.
This work is focused on the tailoring of dispersions of layered silicates, such as MICA SOMASIF (ME-100) within a fluoride matrix (polytetrafluoroethylene) through two strategies: the physicochemical interactions between filler and matrix and the processing of materials. The interactions in these complex systems are modified by new environmentally friendly thermally stable surfactants. The ionic liquids used are based on alkyltriphenyl phosphonium and perfluorinated alkylpyridinium cations. The influences of the cation-anion combination and functionalization were investigated. The use of the supercritical carbon dioxide (ScCO(2)) as a solvent is relevant to generate structuring within the material based on ionic liquid phase separation. The tunability of ionic liquids and their combination with the supercritical carbon dioxide enables to design materials with optimized thermal and mechanical properties.  相似文献   

9.
New silicone‐containing polymers with crosslinkable units have been synthesized by hydrosilation polymerization in both toluene and supercritical carbon dioxide (70°C, 3000 psi) catalyzed by platinum‐divinyltetramethyldisiloxane (Pt‐DVTMS). It was found that high molecular polymers were obtained in both toluene and supercritical carbon dioxide. The polymers were characterized by FTIR, NMR, GPC, TGA, and DSC. The molecular weights of these polymers ranged from 9000 to 39,000. With further hydrolysis and thermal curing, the molecular weight can be increased significantly. Comparison of the properties between reactions in toluene versus supercritical carbon dioxide indicated that the green solvent is a usable alternative for hydrosilation polymerization. The new polymers synthesized in either toluene or supercritical carbon dioxide are thermally stable, ranged from 350 to 488°C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Computer simulations of supercritical carbon dioxide and its mixtures with polar cosolvents: water, methanol, and ethanol (concentration, 0.125 mole fractions) at T = 318 K and ρ = 0.7 g/cm3 are performed. Atom-atom radial distribution functions are calculated by classical molecular dynamics, while the probability distributions of relative orientation of CO2 molecules in the first and second coordination spheres describing the geometry of the nearest environment of CO2 molecules and the trajectories of cosolvent molecules are found using Car-Parrinello molecular dynamics. Based on the latter, the conclusions regarding structure and interactions of polar entrainers in their mixtures with supercritical CO2 are made. It is shown that the microstructure of carbon dioxide varies only slightly upon the introduction of cosolvents.  相似文献   

11.
An automated packed-column semi-preparative supercritical fluid chromatography/mass spectrometry (SFC/MS) system incorporating mass-directed fraction collection has been designed and implemented as an alternative to preparative HPLC and preparative HPLC/MS (PrepLC/MS) for the purification of pharmaceutical compounds. The system incorporates a single quadrupole mass spectrometer and a supercritical fluid chromatograph. Separations were achieved using a binary solvent system consisting of carbon dioxide and methanol. Purification of SFC-separated compounds was achieved incorporating mass-directed fraction collection, enabling selective isolation of the target molecular weight compound and eliminating the collection of undesired compounds (e.g., by-products, excess starting materials, etc.). Cross contamination between fractions and recoveries of the system were investigated. Mass spectrometer ionization with basic mobile additives is discussed, and examples of preparative SFC/MS chiral separations are presented. Early experiences suggest SFC will be a powerful and complementary technique to HPLC for the purification of pharmaceutical compounds.  相似文献   

12.
胡玉  侯震山 《化学进展》2007,19(9):1267-1274
由于超临界二氧化碳(SCCO2)具有稳定、安全、不燃、清洁无毒、粘度小、扩散快、可压缩的特殊性质,所以使得超临界二氧化碳非常适合作为催化反应的绿色溶剂.除此之外,多种气体在超临界二氧化碳中的溶解度很高,这对于那些受传质阻碍和易引起安全隐患的气相反应来讲,使用SCCO2作为替代的反应溶剂具有重要的价值。值得指出的是:如果选择超临界二氧化碳作为氧化反应的溶剂,其自身不会发生反应而产生副产物,从而容易得到清洁的产物。本文主要讨论了超临界二氧化碳作为反应介质对醇、烯烃和烷烃等选择氧化反应的影响,通过与传统溶剂比较可以看出超临界二氧化碳作为氧化反应溶剂的优势,对近几年来以分子氧为氧化剂,以超临界二氧化碳为介质的催化选择氧化的反应体系作了综述,并对未来的发展提出了展望。  相似文献   

13.
本文以催化剂体系为主线,介绍了超临界二氧化碳中以分子氧代替化学计量氧化剂的醇类清洁氧化技术的研究进展。分析了所研究的催化剂体系的催化性能,主要有钯、铂、钌、金等金属催化剂以及杂多酸催化剂体系;介绍了超临界二氧化碳体系中相行为的影响。指出超临界二氧化碳中醇类清洁氧化技术的研究才刚刚起步,其中高效催化剂体系的开发是超临界二氧化碳中醇类清洁氧化技术能否工业化的关键。  相似文献   

14.
The enzymatic transformation of poly(ϵ‐caprolactone) (PCL) into repolymerizable oligomers in supercritical carbon dioxide (scCO2) using an enzyme was carried out in order to establish a sustainable chemical recycling system for PCL, which is a typical biodegradable synthetic plastic. The enzymatic conversion of PCL beads having an n of 110 000 using Candida antarctica lipase (lipase CA) in scCO2 containing small amounts of water quantitatively afforded CL oligomers at 40°C. The CL oligomers were readily repolymerized using the same enzyme to produce high‐molecular weight PCL.  相似文献   

15.
Summary In supercritical fluid chromatography (SFC), the solubilizing nature of the mobile phase enables the use of composition gradients (gradient elution) like in liquid chromatography. With this gradient technique, oligomer separations have been achieved over wide molecular weight ranges. For separating oligomers which absorb only at low wavelengths, a carbon dioxide/acetonitrile mobile phase was used which allows UV detection down to 200 nm. As an ideally suited detection assembly for the chromatography of oligomers, a combination of mass-sensitive and evaporative light-scattering detection is suggested.
Trennung von verschiedenen Oligomeren durch Chromatographie mit überkritischen fluiden Phasen unter Verwendung der Gradientenelution
  相似文献   

16.
Summary: The co-polymerizations of D,L -lactide and glycolide in supercritical carbon dioxide (scCO2) using zinc (II) ethylhexanoate (ZnOct2) as catalyst and methanol as initiator have been investigated. The influence of stirring rate (N), temperature (T), and mass carbon dioxide (mCO2) on molecular weight distribution (MWD); co-polymer composition; and conversion has been studied by means an experimental factorial design. The stirring rate has the greatest influence on conversion. Due to the heterogeneous nature of the process the mass transfer enhancement, that the grater turbulence produces, favors greatly the incorporation of monomers into the polymer phase. An important decrease of molecular weight is observed independently of reaction conditions for high conversion values because some thermal degradation or rearrangement reactions are taking place. The influence of the initiator, methanol, on the molecular weight has been also studied. Methanol acts as an effective chain transfer agent initiating more growing chains than expected, what also contributes to get low molecular weights.  相似文献   

17.
Enzymatic degradation of poly(ε‐caprolactone) has been successfully carried out in supercritical carbon dioxide (scCO2). Candida antarctica lipase smoothly catalyzed the hydrolytic degradation in scCO2 to give oligo(ε‐caprolactone). The degradation in the presence of acetone (5 vol.‐%) produced the oligomer of smaller molecular weight (less than 500) compared to that prepared without the additive. Matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrometry analysis showed that the degradation product was of a mixture of linear and cyclic oligomers. The addition of a very small amount of water also promoted the degradation of the polyester.  相似文献   

18.
Hydrocarbons, dialkyl alkylphosphonates and alkyl alkylphosphonic acids are selectively extracted from spiked soils by successive implementation of supercritical carbon dioxide, supercritical methanol-modified carbon dioxide and pressurized water. More than 95% of hydrocarbons are extracted during the first step (pure supercritical carbon dioxide extraction) whereas no organophosphorus compound is evidenced in this first extract. A quantitative extraction of phosphonates is achieved during the second step (methanol-modified supercritical carbon dioxide extraction). Polar phosphonic acids are extracted during a third step (pressurized water extraction) and analyzed by gas chromatography under methylated derivatives (diazomethane derivatization). Global recoveries for these compounds are close to 80%, a loss of about 20% occurring during the derivatization process (co-evaporation with solvent). The developed selective extraction method was successfully applied to a soil sample during an international collaborative exercise.  相似文献   

19.
超临界二氧化碳流体在酶催化反应中的应用   总被引:5,自引:0,他引:5  
酶催化反应已发展到了利用超临界二氧化碳流体为介质来进行。文章评述了在超临界二氧化碳中影响酶活性和稳定性的重要因素,介绍了SCCO2介质中酶催化反应的最新进展。  相似文献   

20.
孟准  聂俊  何勇 《高分子学报》2010,(6):721-726
探索了聚乙二醇双丙烯酸酯在超临界二氧化碳中发生光聚合反应制备聚合物颗粒的过程.方法为向充满超临界二氧化碳的高压反应釜中,同时喷射二氧化碳与聚乙二醇双丙烯酸酯及光引发剂的溶液,溶液与二氧化碳形成均匀的喷雾并进一步通过反溶剂作用与超临界二氧化碳形成分散体系,当同步进行紫外光照射时,单体可以在超临界二氧化碳中发生光聚合.结果证明此方法是可行的,得到了聚合物微颗粒.研究了不同溶剂及反应原料用量对产物粒径分布的影响.采用不同溶剂,将改变反应原料及产物在超临界二氧化碳中的溶解度,进而改变产物的粒径分布;反应原料用量增加,其在超临界二氧化碳中的溶解度减小,导致产物粒径分布较宽。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号