首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We implemented molecular dynamics simulations of the 13-residue antimicrobial peptide indolicidin (ILPWKWPWWPWRR-NH2) in dodecylphosphocholine (DPC) and sodium dodecyl sulfate (SDS) micelles. In DPC, a persistent cation-pi interaction between TRP11 and ARG13 defined the structure of the peptide near the interface. A transient cation-pi interaction was also observed between TRP4 and the choline group on DPC lipids. We also implemented simulation of a mutant of indolicidin in the DPC micelle where TRP11 was replaced by ALA11. As a result of the mutation, the boat-shaped conformation is lost and the structure becomes significantly less defined. On the basis of this evidence, we argue that cation-pi interactions determine the experimentally measured, well-defined boat-shaped structure of indolicidin. In SDS, the lack of such interactions and the electrostatic binding of the terminal arginine residues to the sulfate groups leads to an extended peptide structure. To the best of our knowledge, this is the first time that a cation-pi interaction between peptide side chains has been shown to stabilize the structure of a small antimicrobial peptide. The simulations are in excellent agreement with available experimental measurements: the backbone of the peptide is more ordered in DPC than in SDS; the tryptophan side chains pack against the backbone in DPC and point away from the backbone in SDS; the rms fluctuation of the peptide backbone and peptide side chains is greater in SDS than in DPC; and the peptide backbone order parameters are higher in DPC than in SDS.  相似文献   

2.
We have studied the impact of ionic liquid solvents on the structure of the Abeta(1-40) peptide from Alzheimer's disease and found that ionic liquid solvents were able to induce a conformational change in the structure of the Abeta(1-40) peptide. This conformational change impacts the self-assembly of the peptide into amyloid fibrils.  相似文献   

3.
Infrared multiple photon dissociation spectroscopy and hydrogen/deuterium exchange methods are used to confirm the macrocylic structure of a b(6) peptide fragment by direct comparison with a synthetically made cyclic peptide. The acetylation of the peptide N-terminus results in the inhibition of the macrocyclic formation, supporting the "head-to-tail" cyclization mechanism. Differences in hydrogen/deuterium exchange rates for macrocyclic and oxazalone structure peptide fragments are interpreted to be a result of the complex interplay of multiple basic sites in the peptide fragment, supporting the relay mechanism for deuterium exchange with CH(3)OD.  相似文献   

4.
Peptides that bind inorganic surfaces and template the formation of nanometer-sized inorganic particles are of great interest for the self- or directed assembly of nanomaterials for sensors and diagnostic applications. These surface-recognizing peptides can be identified from combinatorial phage-display peptide libraries, but little experimental information is available for understanding the relationship between the peptide sequence, structure at the nanoparticle surface, and function. We have developed NMR methods to determine the structures of peptides bound to inorganic nanoparticles and report on the structure of three peptides bound to silica and titania surfaces. Samples were prepared under conditions leading to rapid peptide exchange at the surface such that solution-based nuclear Overhauser experiments can be used to determine the three-dimensional structure of the bound peptide. The binding motif is defined by a compact "C"-shaped structure for the first six amino acids in the 12-mer. The orientation of the peptide on the nanoparticle surface was determined by magnetization transfer from the nanoparticle surface to the nearby peptide protons. These methods can be applied to a wide variety of abiotic interfaces to provide an insight into the relationship between the primary sequence of peptides and their functionality at the interface.  相似文献   

5.
We here report a unique cyclic peptide structure, "helix triangle", as a unique example of peptide-based molecular architecture. The cyclic peptide is designed to have a triangular shape in which three 9mer helical peptide units make the sides and three pyrene derivatives make the apexes. The helical peptide units are ideally linear, and the pyrene units are ideal 60 degrees angular components. The yield of the cyclic peptide was relatively high despite its large cycle size. Absorption and fluorescence spectroscopy revealed that the three pyrene units do not interact with each other electronically, and circular dichroism spectroscopy indicated that the helical peptide units take 3(10)-helical conformation. Geometry optimization by the semi-empirical molecular orbital method gave a triangular structure with 3(10)-helices as the plausible molecular structure. To gain more information on the geometry and demonstrate one example of its self-assemblies, the monolayer of the cyclic peptide was prepared at the air/water interface, and its surface pressure-molecular area isotherm was studied. The isotherm indicated formation of a stable monolayer and suggested that the cyclic peptide actually takes the triangular structure predicted by the geometry optimization. The monolayer was then transferred onto a substrate and characterized by various methods. Ellipsometry and infrared reflection-absorption spectroscopy confirmed that the cyclic peptide has horizontal orientation to the surface in the monolayer. Furthermore, absorption and fluorescence spectroscopy showed that the isolated electronic properties of the pyrene units are intact even in a condensed state in the monolayer.  相似文献   

6.
The recently determined structure of a zinc binding peptide reveals that a particular sequence can adopt one stable fold as an isolated peptide but adopt an alternative structure as part of a larger protein domain.  相似文献   

7.
A heterocyclic peptide nanotube   总被引:3,自引:0,他引:3  
An open-ended hollow tubular structure is designed based on hydrogen-bond-directed self-assembly of a chimeric cyclic peptide subunit comprised of alternating alpha- and epsilon-amino acids. The design features a novel 1,4-disubstituted-1,2,3-triazole epsilon-amino acid and its utility as a peptide backbone substitute. The N-Fmoc-protected epsilon-amino acid was synthesized in high yield and optical purity in three steps from readily available starting materials and was employed in solid-phase peptide synthesis to afford the desired cyclic peptide structure. The cyclic peptide self-assembly has been studied in solution by (1)H NMR and mass spectrometry and the resulting tubular ensemble characterized in the solid state by X-ray crystallography.  相似文献   

8.
The most potent inhibitor of the p53-MDM2 interaction reported to date is an 8-mer p53 peptide analogue (Novartis peptide), which contains 6-chlorotryptophane (Cl-Trp) and phosphonomethylphenylalanine (Pmp) as key residues for the enhanced activity. We report here a crystal structure of the co-complex between MDM2 and the Novartis peptide solved at 1.8 A resolution. The structural basis for the role of the two aromatic residues are delineated by comparing the present structure with crystal structures of the MDM2 co-complex bound to other inhibitors including the wt-p53 peptide itself.  相似文献   

9.
We introduce a de novo designed peptide model system that enables the systematic study of 1) the role of a membrane environment in coiled-coil peptide folding, 2) the impact of different domains of an alpha-helical coiled-coil heptad repeat on the interaction with membranes, and 3) the dynamics of coiled-coil peptide-membrane interactions depending on environmental conditions. Starting from an ideal alpha-helical coiled-coil peptide sequence, several positively charged analogues were designed that exhibit a high propensity toward negatively charged lipid membranes. Furthermore, these peptides differ in their ability to form a stable alpha-helical coiled-coil structure. The influence of a membrane environment on peptide folding is studied. All positively charged peptides show strong interactions with negatively charged membranes. This interaction induces an alpha-helical structure of the former random-coil peptides, as revealed by circular dichroism measurements. Furthermore, vesicle aggregation is induced by a coiled-coil interaction of vesicle-bound peptides. Dynamic light scattering experiments show that the strength of vesicle aggregation increases with the peptide's intrinsic ability to form a stable alpha-helical coiled coil. Thus, the peptide variant equipped with the strongest inter- and intra-helical coiled-coil interactions shows the strongest effect on vesicle aggregation. The secondary structure of this peptide in the membrane-bound state was studied as well as its effect on the phospholipids. Peptide conformation within the peptide-lipid aggregates was analyzed by (13)C cross-polarization magic-angle spinning NMR experiments. A uniformly (13)C- and (15)N-labeled Leu residue was introduced at position 12 of the peptide chain. The (13)C chemical shift and torsion angle measurements support the finding of an alpha-helical structure of the peptide in its membrane-bound state. Neither membrane leakage nor fusion was observed upon peptide binding, which is unusual for amphiphatic peptide structures. Our results lay the foundation for a systematic study of the influence of the alpha-helical coiled-coil folding motif in membrane-active events on a molecular level.  相似文献   

10.
The structure of the 19-amino acid peptide epitope, corresponding to the 141-159 sequence of capsid viral protein VP1 of foot-and-mouth disease virus (FMDV), bound to three different resins, namely, polystyrene-MBHA, PEGA, and POEPOP, has been determined by high-resolution magic angle spinning (HRMAS) NMR spectroscopy. A combination of homonuclear and heteronuclear bidimensional experiments was used for the complete peptide resonance assignment and the qualitative characterization of the peptide folding. The influence of the chemicophysical nature of the different polymers on the secondary structure of the covalently attached FMDV peptide was studied in detail. In the case of polystyrene-MBHA and polyacrylamide-PEGA resins, the analysis of the 2D spectra was hampered by missing signals and extensive overlaps, and only a propensity toward a peptide secondary structure could be derived from the assigned NOE correlations. When the FMDV peptide was linked to the polyoxyethylene-based POEPOP resin, it was found to adopt in dimethylformamide a helical conformation encompassing the C-terminal domain from residues 152 to 159. This conformation is very close to that of the free peptide previously analyzed in 2,2,2-trifluoroethanol. Our study clearly demonstrates that a regular helical structure can be adopted by a resin-bound bioactive peptide. Moreover, a change in the folding was observed when the same peptide-POEPOP conjugate was swollen in aqueous solution, displaying the same conformational features as the free peptide in water. The possibility of studying solid-supported ordered secondary structures by the HRMAS NMR technique in a wide range of solvents can be extended either to other biologically relevant peptides and proteins or to new synthetic oligomers.  相似文献   

11.
The internalization mechanism of a cell-penetrating peptide has been explored through combinatorial selection of a phage-displayed peptide dimer library, chemical synthesis, and biophysical characterization. Both energy-dependent and energy-independent modes for peptide uptake by the target mammalian cells were observed, suggesting a role for higher-order structure in modulating the action of this novel cell-penetrating peptide.  相似文献   

12.
Gold nanoparticles having sequential alternating amphiphilic peptide chains, Phe-(Leu-Glu)8, on the surface have been prepared. We describe structural control of the amphiphilic peptide coated gold nanoparticle assembly by a conformational transition of the surface peptides. Under the acidic condition, the conformation of the surface amphiphilic peptide was converted to a beta-sheet structure from an aggregated alpha-helix by incubation. Under this condition, the amphiphilic peptide coated gold nanoparticles formed a nanosheet assembly. The plasmon absorption maximum of the gold nanoparticles shifted to a shorter wavelength with the formation of the beta-sheet assembly of the surface peptide. This suggests that the structure of the peptide coated gold nanoparticle assembly could be controlled by the conformational transition of the surface peptide. Furthermore, the core gold nanoparticle could be fixed in the beta-sheet assembly in the state that stood alone. This system may be useful for novel molecular devices that exhibit quantized properties.  相似文献   

13.
多肽在生命过程中扮演着重要的角色,对其生理生化功能的研究与应用,离不开对单一多肽物质的需求,而化学合成法是获取目标多肽的最有效方法之一。对合成产物的分离与鉴定,是优化合成条件,以得到高产率的重要保证。以两种内源性神经肽亮氨酸脑啡肽和甲硫氨酸脑啡肽为模型,利用Fmoc固相多肽合成策略对其进行合成,并建立了HPLC-ESI-MS/MS新方法用于所制备的亮氨酸脑啡肽和甲硫氨酸脑啡肽的分离与结构鉴定。研究结果显示,主要合成产物均为目标多肽,副产物主要包括C端丢失1个氨基酸所形成的四肽,以及由于甲硫氨酸残基氧化而形成的含甲硫氨酸亚砜的多肽。该研究为高效合成含敏感氨基酸的生理活性多肽提供了新信息。  相似文献   

14.
Nuclear magnetic resonance (NMR) spectroscopy was used to study a cyclic peptide derived from the amino-terminal copper-and-nickel-binding (ATCUN) motif. The three-dimensional structure of the unliganded peptide in aqueous solution was solved by simulated annealing using distance constraints derived from Nuclear Overhauser Effects. A structural model for the Ni(II)-bound complex was also produced based on NMR evidence and prior spectroscopic data, which are consistent with crystal structures of linear ATCUN complexes. Structural interpolation, or ‘morphing’, was used to understand the transition of this highly structured cyclic peptide from its unliganded structure to its metal-ion-bound structure.  相似文献   

15.
We have undertaken fundamental studies on the solubility properties of a peptide derived from the fourth transmembrane (TM) domain of signal peptide peptidase, a 7-TM intramembrane-cleaving protease. We have found that by disfavoring secondary structure formation we are able to greatly improve the solubility, handling, and purification properties of this peptide. Our findings suggest that preventing secondary structure formation by reversible modification of the polypeptide backbone of hydrophobic transmembrane peptides may be a useful strategy for the total chemical protein synthesis of integral membrane proteins.  相似文献   

16.
[structure: see text]. We report the incorporation of a thioamide linkage between the i + 2 and i + 3 residues of the type II' beta-turn of a peptide known to fold into a beta-hairpin conformation. Two-dimensional NMR spectroscopy and circular dichroism spectroscopy indicate that the thioxo peptide adopts a hairpin conformation similar to that of the oxo peptide and that the hairpin conformation persists at elevated temperatures. The results show that a thioamide linkage is compatible with beta-sheet secondary structure.  相似文献   

17.
合成多肽疫苗研究进展   总被引:2,自引:0,他引:2  
综述了合成多肽疫苗的研究进展,系统地介绍了目前寻找抗原肽的各种方法以及各类可用作疫苗接种的合成多肽抗原的制备和应用.  相似文献   

18.
A cyclodextrin‐peptide hybrid (CD‐peptide) bearing three units of γ‐cyclodextrin, cholic acid, and a dansyl fluorophore in the side chain has been prepared. In this novel CD‐peptide, the cholic acid unit acts as an internal guest and forms an intramolecular inclusion complex with γ‐cyclodextrin in the CD‐peptide. This intramolecular complex works as a host‐guest bridge in the CD‐peptide and remarkably stabilizes the α‐helix structure of the CD‐peptide.  相似文献   

19.
20.
The crystal structure of the 13 residue peptide Boc-Leu-Aib-Val-Ala-Leu-Aib-Val-DAla-DLeu-Aib-Leu-Aib-Val-OMe reveals a continuous helical conformation providing an unambiguous characterization of contiguous D-residues in a right handed peptide helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号