首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We propose a novel method of coupling heterogeneous quantum dots at fixed distances and capsulating the coupled quantum dots by utilizing nanometric local curing of a photo-curable polymer caused by multistep electronic transitions based on a phonon-assisted optical near-field process between quantum dots. Because the coupling and the capsulating processes are triggered only when heterogeneous quantum dots floating in a solution closely approach each other to induce optical near-field interactions between them, the distances between the coupled quantum dots are physically guaranteed to be equal to the scale of the optical near fields. To experimentally verify our idea, we fabricated coupled quantum dots, consisting of CdSe and ZnO quantum dots and a UV-curable polymer. We also measured the photoluminescence properties due to the quantum-dot coupling and showed that the individual photoluminescences from the CdSe and ZnO quantum dots exhibited a trade-off relationship.  相似文献   

2.
We propose and demonstrate the operation of a nanometric optical NOT gate using CuCl quantum dots coupled via an optical near-field interaction. The device was smaller than 20 nm and its repeated operation was verified. The operating energy of this device was much lower than that of a conventional photonic device. We also introduce all-optical NAND and NOR gates using coupled quantum dots. Toward an actual nanophotonic device, we discuss the possibility of coupled InAlAs quantum dots. A double layer of InAlAs quantum dots for nanophotonic device operation was prepared using molecular beam epitaxial growth. We obtained a near-field spectroscopy signal, indicating that the InAlAs quantum dots coupled with the optical near field acted as a NOT gate. The experimental results show that the sample has great potential as an actual nanophotonic device. PACS 78.67.Hc; 07.79.Fc; 42.79.Ta  相似文献   

3.
We have previously demonstrated a novel technique for autonomously forming a nanophotonic droplet, which is micro-scale spherical polymer structure that contains paired heterogeneous nanometric components. The sort-selectivity and alignment accuracy of the nanometric components in each nanophotonic droplet, and the related homogeneity of the optical function, are due to a characteristic pairing process based on a phonon-assisted photo-curing method. The proposed method requires irradiating a mixture of components with light to induce optical near-field interactions between each component, and subsequent processes based on these interactions. The pairing yield of components via the interactions is considered to mainly depend on the frequency of their encounters and the size-resonance effect between encountered components. In this paper, we model these two factors by individual stochastic procedures and construct a numerical model to describe the pairing process. Agreement between the results of numerical and experimental demonstrations shows the validity of our stochastic modeling.  相似文献   

4.
5.
We demonstrate the existence of ferrimagnetic and ferromagnetic phases in a spin phase diagram of coupled lateral quantum dot molecules in the quantum Hall regime. The spin phase diagram is determined from the Hartree-Fock configuration interaction method as a function of electron number N and magnetic field B. The quantum Hall ferrimagnetic phase corresponds to spatially imbalanced spin droplets resulting from strong interdot coupling of identical dots. The quantum Hall ferromagnetic phases correspond to ferromagnetic coupling of spin polarization at filling factors between nu=2 and nu=1.  相似文献   

6.
Raman scattering by optical phonons in InxGa1 ? x As/AlAs nanostructures with quantum dots has been studied experimentally for compositions corresponding to x = 0.3?1 under out-resonance conditions. Features due to scattering by GaAs-and InAs-like optical phonons in quantum dots have been detected, and the phonon frequencies have been determined as a function of the dot composition. With increasing excitation energy, a red shift is observed in the frequency of the GaAs-like phonon in quantum dots, which testifies to Raman scattering selective by the size of quantum dots. Under resonant conditions, multiphonon light scattering by optical and interface phonons is observed up to the third order, including overtones of the first-order phonons of InGaAs and AlAs materials and their combinations.  相似文献   

7.
We report low-temperature conductance measurements in the Coulomb blockade regime on two nominally identical tunnel-coupled quantum dots in parallel defined electrostatically in the two-dimensional electron gas of a GaAs/AlGaAs heterostructure. At low interdot tunnel coupling we find that the conductance measured through one dot is sensitive to the charge state of the neighboring dot. At larger interdot coupling the conductance data reflect the role of quantum charge fluctuations between the dots. As the interdot conductance approaches 2e2/h, the coupled dots behave as a single large dot.  相似文献   

8.
Controllable interactions that couple quantum dots are a key requirement in the search for scalable solid state implementations for quantum information technology. From optical studies of excitons and corresponding calculations, we demonstrate that an electric field on vertically coupled pairs of In(0.6)Ga(0.4)As/GaAs quantum dots controls the mixing of the exciton states on the two dots and also provides controllable coupling between carriers in the dots.  相似文献   

9.
Based on the framework of effective-mass approximation and variational approach, optical properties of exciton are investigated theoretically in ZnO/MgxZn1−xO vertically coupled quantum dots (QDs), with considering the three-dimensional confinement of electron and hole pair and the strong built-in electric field effects due to the piezoelectricity and spontaneous polarization. The exciton binding energy, the emission wavelength and the oscillator strength as functions of the different structural parameters (the dot height and the barrier thickness between the coupled wurtzite ZnO QDs) are calculated with the built-in electric field in detail. The results elucidate that structural parameters have a significant influence on the exciton state and optical properties of ZnO coupled QDs. These results show the optical and electronic properties of the quantum dot that can be controlled and also tuned through the nanoparticle size variation.  相似文献   

10.
Silicon nanophotonic circuits can exhibit a very high level of functional integration due to the very small cross sections of the silicon waveguides. However, to be implemented in data transmission networks, such circuits still must be interfaced with optical fibers having much larger dimensions. Due to this mismatch in size, a coupling structure is required in order to minimize the coupling loss. Diffraction grating coupler structures are one of the best candidates to perform this mode size conversion with good performances. However, they are also very sensitive to fabrication tolerances that may require an adaptation of the coupling conditions. In this paper, we present an iterative numerical method to optimize the design of a grating coupler by analyzing the out coupled beam from the waveguide towards the fiber. Using this method we show in details the sensitivity of the grating couplers to the principal fabrication variabilities in order to maximize the robustness of the design. A grating with 53% fiber to waveguide coupling efficiency is designed. Considering the dispersion of the modern CMOS fabrication processing, it appears that the optimal fiber coupling ratio remains rather constant but the optimal coupling angle at a given wavelength may vary by as much as ±10°.  相似文献   

11.
We theoretically demonstrate optical pulsation based on optical near-field interactions between quantum nanostructures. It is composed of two quantum dot systems, each of which consists of a combination of smaller and larger quantum dots, so that optical excitation transfer occurs. With an architecture in which the two systems take the role of a timing delay and frequency up-conversion, we observe pulsation in populations pumped by continuous-wave light irradiation. The pulsation is induced with suitable setting of parameters associated with the optical near-field interactions. This will provide critical insights toward the design and implementation of experimental nanophotonic pulse generating devices.  相似文献   

12.
High-quality alloyed near-infrared CdTexSe1?x quantum dots were synthesized by a modified organometallic method. The emission wavelength of the alloyed quantum dots were turned from visible to near-infrared range by changing the composition of the precursor. The photoluminescence intensity of the alloyed quantum dots was further enhanced by coupling through localized surface plasmons from Au nanoparticles. The alloyed CdTeSe quantum dots coupled with Au nanoparticles exhibited a 4 times photoluminescence enhancement than that of bare CdTeSe quantum dots by turning the localized surface plasmons resonant absorption of Au nanoparticles consistent to the excitation wavelength. This method will be beneficial for the potential applications in the biological imaging and detection.  相似文献   

13.
This is the first report on the generation of trap states and their effective elimination in highly confined CdSe quantum dots in order to obtain enhanced and stable optical properties prepared by aqueous route. Surface plays an important role in optical properties of quantum dots (QDs) and surface modification of quantum dots can improve optical properties. In present work luminescent CdSe QDs were prepared using 2-Mercaptoethanol (2-ME) as stabilizing agent and encapsulated by polymer. Different concentrations of 2-ME were used to tune the emission spectra with respect to their reduced size. Addition of 2-ME to CdSe QDs enhances the trap emission and quenching band edge emission due to (i) increased surface to volume ratio and; (ii) presence of high concentration of sulfide ions as confirmed from EDX analysis as sulfide ions possesses the hole scavenging characteristics. Polymer encapsulation of QDs was carried out to make them stable and to improve their optical properties. Even though there are previous reports addressing the improved optical properties by polymer encapsulation and silica encapsulation but experimentally it has not been reported yet experimentally. In this work we have synthesized and characterized water soluble polymer encapsulated QDs and proved the facts experimentally. Photoluminescence spectroscopy clearly reveals the role of polymer encapsulation in boosting the optical properties of CdSe QDs. FTIR spectra validate the presence of biocompatible functional groups on CdSe4/PEG (Polymer encapsulated QDs).  相似文献   

14.
Using the Green’s function technique, we respectively investigate the electron transport properties of two spin components through the system of a T-shaped double quantum dot structure coupled to a Majorana bound state, in which only one quantum dot is connected with two metallic leads. We explore the interplay between the Fano effect and the MBSs for different dot-MBS coupling strength λ, dot-dot coupling strength t, and MBS-MBS coupling strength εM in the noninteracting case. Then the Coulomb interaction and magnetic field effect on the conductance spectra are investigated. Our results indicate that G(ω) is not affected by the Majorana bound states, but a “0.5” conductance signature occurs in the vicinities of Fermi level of G(ω). This robust property persists for a wide range of dot-dot coupling strength and dot-MBS coupling strength, but it can be destroyed by Coulomb interaction in quantum dots. By adjusting the size and direction of magnetic field around the quantum dots, the “0.5” conductance signature damaged by U can be restored. At last, the spin magnetic moments of two dots by applying external magnetic field are also predicted.  相似文献   

15.
In a system of N interacting single-level quantum dots (QDs), we study the relaxation dynamics and the current–voltage characteristics determined by symmetry properties of the QD arrangement. Different numbers of dots, initial charge configurations, and various coupling regimes to reservoirs are considered. We reveal that effective charge trapping occurs for particular regimes of coupling to the reservoir when more than two dots form a ring structure with the CN spatial symmetry. We reveal that the effective charge trapping caused by the CN spatial symmetry of N coupled QDs depends on the number of dots and the way of coupling to the reservoirs. We demonstrate that the charge trapping effect is directly connected with the formation of dark states, which are not coupled to reservoirs due to the system spatial symmetry CN. We also reveal the symmetry blockade of the tunneling current caused by the presence of dark states.  相似文献   

16.
Adiabatic passage schemes in coupled semiconductor quantum dots are discussed. For optical control, a doped double-dot molecule is proposed as a qubit realization. The quantum information is encoded in the carrier spin, and the flexibility of the molecular structure allows to map the spin degrees of freedom onto the orbital ones and vice versa, which opens the possibility for high-finesse quantum gates by means of stimulated Raman adiabatic passage. For tunnel-coupled dots, adiabatic passage of two correlated electrons in three coupled quantum dots is shown to provide a robust and controlled way of distilling, transporting and detecting spin entanglement, as well as of measuring the rate of spin disentanglement. Employing tunable interdot coupling the scheme creates, from an unentangled two-electron state, a superposition of spatially separated singlet and triplet states, which can be discriminated through a single measurement. Finally, we discuss phonon-assisted dephasing in quantum dots, and present control strategies to suppress such genuine solid-state decoherence losses.  相似文献   

17.
There is an increasing interest in Quantum Dot (QD) structures for a plethora of applications, including optoelectronic devices, quantum information processing and energy harvesting. Over the last few years, self assembled quantum dots have been observed in a wide variety of semiconductor systems. Several methods for self organized dots have been suggested, among them the most common is the Stranski–Krastanov (S–K) growth mode. The S–K growth mode needs a mismatch between the substrate and the dots material. Recently, an alternative approach of growing QD’s, has emerged known as the Droplet heteroepitaxial method. This method is potentially not limited to mismatched material systems and is very attractive for growth of binary and more complicated compounds based on low melting point elements. In this work we present a detailed study on the growth mechanisms of the InSb-based droplets quantum dots and show the large versatility of this droplets growth system in achieving different optical properties of the dots system.  相似文献   

18.
We employ a new laterally coupled, vertical double dot with a tunable tunnel-coupling gate in a parallel configuration to study the electron spin and orbital dependence of quantum mechanical tunnel coupling on the size of the honeycomb vertices in the small electron numbers regime. We find a transition from the weak coupling regime, where fluctuations in tunnel coupling due to varying electron configuration dominate the anticrossings, to a regime where the two dots coalesce. We apply a magnetic field to ascertain the orbital angular momenta of the Fermi surface eigenstates, which correlate with anticrossing size, and we identify spin pairs with congruent behavior.  相似文献   

19.
The circular dichroism(CD) signal of a molecule is usually weak,however,a strong CD signal in optical spectrum is desirable because of its wide range of applications in biosensing,chiral photo detection,and chiral catalysis.In this work,we show that a strong chiral response can be obtained in a hybridized system consisting of an artificial chiral molecule and a nanorod in the strong coupling regime.The artificial chiral molecule is composed of six quantum dots in a helix assembly,and its CD signal arises from internal Coulomb interactions between quantum dots.The CD signal of the hybridized system is highly dependent on the Coulomb interactions and the strong coupling progress through the electromagnetic interactions.We use the coupled oscillator model to analyze strong coupling phenomenon and address that the strong coupling progress can amplify the CD signal.This work provides a scenario for designing new plasmonic nanostructures with a strong chiral optical response.  相似文献   

20.
In the tight binding approximation, the spatial configuration of the ground state and the binding energy of a hole in a “diatomic” artificial molecule formed by vertically coupled Ge/Si(001) quantum dots are studied. The inhomogeneous spatial distribution of elastic strain arising in the medium due to the lattice mismatch between Ge and Si is taken into account. The strain is calculated using the valence-force-field model with a Keating interatomic potential. The formation of the hole states is shown to be determined by the competition of two processes: the appearance of a common hole due to the overlapping of “atomic” wavefunctions and the appearance of asymmetry in the potential energy of a hole in the two quantum dots because of the superposition of the elastic strain fields from the vertically aligned Ge nanoclusters. When the thickness of the Si layer separating the Ge dots (t Si) is greater than 2.3 nm, the binding energy of a hole in the ground state of the two-dot system proves to be lower than the ionization energy of a single quantum dot because of the partial elastic stress relaxation due to the coupling of the quantum dots and due to the decrease in the depth of the potential well for holes. For the values of the parameter t Si, an intermediate region is revealed, where the covalent molecular bond fails and the hole is localized in one of the two quantum dots, namely, in the dot characterized by the highest strain values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号