首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of several 1,3-dimethyl-2-(azol-l′-yl)-1,3,2-diazaboracyclohexanes is described and their NMR spectra are interpreted. The reaction of 2-(pyrazol-1′-yl)-1,3,2,-diazaboracyclohexanes with pyrazoles was found to lead to 1/1 molar adducts which exist in equlibrium with the uncomplexed species, whereas B-tetraalkylpyrazaboles are obtained on reaction with (dimethylamino)dialkylboranes. Similar reactions of 2-(pyrazol-l′-yl)-1,3,2-diazaboracyclopentanes with several other nitrogen donor molecules were examined. The chemistry of the various species was found to be greatly affected by the NBN bond angle of the 1,3,2-diazaboracycloalkane ring. The reaction of pyrazabole with monoamines requires very high temperatures which, however, promote extensive ligand redistribution; no monomeric pyrazol-l-ylboranes could be obtained from the process.  相似文献   

2.
Novel optically active 2-(pyrazol-1-yl)pyridines have been prepared using resolved the O-methyl ether of atrolactic acid as a source of the adjacent quaternary carbon stereocenter. Different regioisomers were formed selectively in the reaction of 2-hydrazinopyridines with the chiral 1,3-diketone and in the nucleophilic substitution of 2-chloropyridines with the potassium salt of the chiral pyrazole. The second route gave 2-(pyrazol-1-yl)pyridines with the stereogenic center neighboring the coordinating nitrogen in the pyrazole ring. Also, new C2-symmetric chiral ligands based on 2,6-bis(pyrazolyl)pyridine and 6,6′-bis(pirazolyl)-2,2′-bipyridine structures were obtained.  相似文献   

3.
Thermal decomposition of the diazonium sulfate derived from N-methyl-(1-phenyl-3-methylpyrazol-5-yl)-2-aminobenzamide afforded products formulated as 1-phenyl-3-methyl[2]benzopyrano[4,3-c]pyrazol-5-one (yield 10%), 1,4-dimethyl-3-phenylpyrazolo[3,4-c]isoquinolin-5-one (yield 10%), N-methyl-(1-phenyl-3-methylpyrazol-5-yl)-2-hydroxybenzamide (yield 8%) and 4′-hydroxy-2,3′-dimethyl-1′-phenylspiro[isoindoline-1,5′-[2]-pyrazolin]-3-one (yield 20%). Decomposition of the diazonium sulfate derived from N-methyl-(1,3-diphenylpyrazol-5-yl)-2-aminobenzamide gave products formulated as 7,9-dimethyldibenzo[e,g]pyrazolo[1,5-a][1,3]-diazocin-10-(9H)one (yield 8%), 4-methyl-1,3-diphenylpyrazolo[3,4-c]isoquinolin-5-one (yield 7%) and 4′-hydroxy-2-methyl-1′,3′-diphenylspiro[isoindoline-1,5′-[2]pyrazolin]3-one (yield 10%). The spiro compounds 6a,b underwent thermal and acid-catalysed conversion into the hitherto unknown 2-benzopyrano[4,3-c]pyrazole ring system 7a,b in good yield. Analytical and spectral data are presented which supported the structures proposed.  相似文献   

4.
Alkylation of 2-amino-6-chloropurine with 5-(2-bromoethyl)-2,2-dimethyl-1,3-dioxan (7) and subsequent acid hydrolysis provides an improved procedure for synthesis of the antiviral acyclonucleoside 9-(4-hydroxy-3-hydroxymethylbut-1-yl) guanine (3).  相似文献   

5.
Two new tetrahydropyrans have been isolated from the sponge Haliclona sp. From chemical and spectroscopic evidence they are shown to be (1′R, 2S, 2″E, 5R, 6R)-2-(1′-bromethyl)-2,5-dimethyl-6-(penta-2″,4″-dienyl)-tetrahydropyran and (1′R, 2S, 5R, 6R)-2-(1′-bromoethyl)-2,5-dimethyl-6-(pent-4″-enyl)-tetrahydropyran.  相似文献   

6.
The reactions of pyrazole, 3,5-dimethylpyrazole, and its 4-nitro derivatives with 1,4-dimethoxybenzene during undivided amperostatic electrolysis in MeCN (CH2Cl2) were studied. The basicity of the medium, which depends on the solvent nature, the nature and concentration of pyrazole and the acid-base properties of additives, and the amount of electricity passed determine the yield and relative content of the target products, viz., 1,4-dimethoxy-2-(pyrazol-1-yl)benzenes (1) and 1,4-dimethoxy-1,4-di(pyrazol-1-yl)cyclohexa-2,5-dienes (2). The process occurs mainly through the interaction of the nonionized solvato complex of pyrazole with the 1,4-dimethoxybenzene radical cation and affords radical intermediates structurally similar to compounds 1 and 2. The key stage of the process determining the 1 : 2 ratio is the rearrangement of the intermediately produced 1,4-dimethoxy-1-(pyrazol-1-yl)arenonium cation to the 1-(pyrazol-1-yl)-2,5-dimethoxyarenonium cation.  相似文献   

7.
UV irradiation of hexacarbonyl-μ-η6:6-1,1′-bi(2,4,6-cycloheptatrien-1-yl)dichromium(O) (I) in THF in the presence of 1,3-butadiene (A), E-1,3-pentadiene (B) and EE-2,4-hexadiene (C) causes preferentially a twofold [4 + 6]-cycloaddition and formation of the hexacarbonyl-μ-2–5 : 8.9-η-2′–5′ : 8′,9′-η-11,11′-bi(bicyclo-[4.4.1]undeca-2,4,8-trien-11-yl)dichromium(O) complexes (IVA–IVC). Partial decomplexation after the first [4 + 6]-cycloaddition yields isomeric tricarbonyl-2–5:8,9-η- (IIA–IIC) and tricarbonyl-2′–7′-η-{11-(2′,4′,6′-cycloheptatrien-1′-yl)bicyclo[4.4.1]undeca-2,4,8-triene}chromium(O) complexes (IIIA–IIIC). With 2,3-dimethyl-1,3-butadiene (D) mainly dicarbonyl-2–6 : 2′–4′-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(8″,9″-dimethylbicyclo[4.4.1]undeca-2″, 4″,8″-trien-11″-yl)cyclohepta-3,5-dien-2-yl}chromium(O) (VD) besides small amounts of pentacarbonyl-μ-2–6 : 2′–4′-η-2″–7″-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(2″, 4″,6″-cycloheptatrien-1″-yl)cyclohepta-3,5-dien-2-yl}dichromium(O) (VID) and tricarbonyl-2′-7′-η-{11-(2′,4′,6′-cycloheptatrien-1′-yl)-8,9-dimethyl-bicyclo[4.4.1]undeca-2,4,8-triene}-chromium(O) (IIID) is obtained. VD adds readily CO to yield tricarbonyl-2–5 : 8,9-η-11,11′-bi(8,9-dimethyl-bicyclo[4.4.1]undeca-2,4,8-trien-11-yl)chromium(O) (VIID). Finally D adds to VID under formation of pentacarbonyl-μ-2–6 : 2′–4′-η-2″–5″ : 8″,9″-η-{1-(2′,3′-dimethyl-3′-buten-1′,2′-diyl)-7-(8″,9″-dimethyl-bicyclo[4.4.1]- undeca-2″,4″,8″-trien-11″-yl)cyclohepta-3,5-dien-2-yl}dichromium(O) (VIIID). From IVA–IVC the hydrocarbon ligands (IXA–IXC) can be liberated by P(OCH3)3 in good yields. The structures of the compounds IIA–IXC were determined by IR  相似文献   

8.
The complexes trans-[PdCl{C(=NR)C(ME)=NR'} (PPh3)2] (R=C6H11,p-C6H4OMe; R.?=p-C6H4OMe, Me) containing a σ-bonded 1,4-diaza-3-menthyl-butadiene-2-yl group with different substituents on the nitrogen atoms have been prepared by two routes. The first involves initial methylation of the mixed isonitrile complex [PdCl2(CNR)(CNR')]by HgMe2, followed by reaction with PPh3 (PdPPh3molar ratio 12). The second method involves condensation of primary aliphatic amines with the carbonyl group of the 1-azabut-1-en-3-one-2-yl moiety of the complex trans-[PdCl{C(=NR)C(Me) = 0} (PPh3)2]. The 1,4-diaza-3-methylbutadiene-2-yl derivatives act through their imino nitrogen atoms as chelating ligands towards anhydrous metal chlorides MCl2 (M = Co, Ni, Cu, Zn). Magnetic moment measurements and the far-infrared and electronic spectra of these adducts indicate an essentially pseudo-tetrahedral configuration at M in the solid and in solution. With the ZnCl2 adducts, the 1H NMR pattern for the phenyl protons of the p-methoxyphenyl N-substituents dependss upon the position of the substituent i the 1,4-diazabutadiene chain.  相似文献   

9.
1-, 3-, and 5-Alkylpyrazoles, as well as linearly bridged bis-pyrazoles, were converted into the corresponding 4-formyl derivatives by Vilsmeier-Haak reaction both under standard conditions and under microwave activation in DMF over a period of 10 min. 1,1′-(Hexane-1,6-diyl)bis(3,5-dimethyl-1H-pyrazole) and 1,1′-(benzene-1,4-diyldimethylene)bis(3,5-dimethyl-1H-pyrazole) gave rise to 4-formyl derivatives at both pyrazole rings. 5-Chloro-1,3-dialkyl-1H-pyrazoles failed to undergo formylation according to Vilsmeier-Haak or under microwave activation. 1,1′-Bridged bis-3,5-dimethyl-1H-pyrazoles reacted with 2-sulfanylethanol on heating in the presence of chloro(trimethyl)silane to give the corresponding bridged bis-4-(1,4,6-oxadithiocan-5-yl)-1H-pyrazoles.  相似文献   

10.
A synthesis of (2S,3S,7S)-3,7-dimethylpentadecan-2-yl acetate (2) and propionate (3) is described. (2S)-2-Methyldecan-1-yl lithium (5) was reacted with (3S,4S)-3,4-dimethyl-γ-butyrolactone (6) to yield the ketoalcohol 19 which upon Huang-Minlon reduction furnished (2S,3S,7S)-3,7-dimethylpentadecan-2-ol (1). Acylations gave the esters 2 and 3. The (2S)-2-methyldecan-1-yl lithium was obtained via asymmetric synthesis. The chiral lactone 6 was obtained from (2S,3S)-trans-2,3-epoxybutane and dimethyl malonate.  相似文献   

11.
12.
A simple and versatile method for the synthesis of pyrazol-3-yl-1,3,4-oxadiazole, pyrazol-3-yl-1,2,4-triazole, (1,5-diphenylpyrazol-3-yl)-(3,5-dimethyl-1-carbonyl)pyrazole, and (1,5-diphenylpyrazol-3-yl)-(5-hydroxy-3-metheyl-1-carbonyl)pyrazole derivatives from 1,5-diphenylpyrazole-3-carboxylic acid hydrazide has been developed.  相似文献   

13.
《Tetrahedron: Asymmetry》2006,17(22):3063-3066
A stereocontrolled synthesis of the methyl ester of (2S)-3-amino-2-((4′S)-2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)propanoic acid from d-glyceraldehyde is described for the first time. This method involves the stereoselective Michael addition of the lithium salt of tris(phenylthio)methane to (S)-2,2-dimethyl-4-((E)-2-nitrovinyl)-1,3-dioxolane followed by hydrolysis of the resulting (4S)-2,2-dimethyl-4-((2′S)-3′-nitro-1′,1′,1′-tris(phenylthio)propan-2′-yl)-1,3-dioxolane to (2S)-methyl 2-((4′S)-2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)-3-nitropropanoate, which was finally reduced to the target compound. A similarly stereocontrolled transformation of l-glyceraldehyde into (2R)-methyl 3-amino-2-((4′R)-2′,2′-dimethyl-1′,3′-dioxolan-4′-yl)propanoate is also described.  相似文献   

14.
cis- and trans - 2,3 - Dimethylenemethylenecyclopropane (C and T) interconvert at 160.0° with a small normal kinetic isotope effect (KIE) when the exo-methylene is deuterated, but the 1,3-shift products, 2-methylethylidenecyclopropane, show a large normal KIE, 1.35 and 1.31, when formed from C and T, respectively. This data can be interpreted in terms of either parallel reactions or a common trimethylenemethane diradical intermediate formed with a normal KIE of 1.11 and closing to 1,3-shift product with a normal KIE of 1.29 due to the effect of deuterium in the required 90° rotation of the exo-methylene carbon.The kinetics of the thermal 1,3- and 3,3-shifts of cis- and rans-3,4-dimethyl-1,2-dimethylenecyclobutane (CB and TB) were determined in a flow reactor. The first order rate constants are log kCB (sec?1) = 13.7 ? 42,200/2.3 RT and log kTB (sec?1) = 13.6 ? 41,900/2.3 RT (Ea in kcal/m) which compare favorably to that from the parent hydrocarbon. 1,2-dimethylenecyclobutane, after reasonable correction for dimethyl substitution.Rearrangement of TB and its bis(dideuteriomethylene) derivative at 230.0° revealed a normal KIE of 1.08. This KIE could be interpreted in terms of either a methylene rotational isotope effect in a concerted reaction or formation of a bisallyl diradical with the expected normal rotational IE on closure to the 1,3-shift product of 1.12 with no IE in the ring opening when the result is corrected for return of the biradical to starting material.The kinetics of intramolecular 2 + 2 cycloaddition of 1,2,8,9-decatetraene were determined in a flow reactor. The first order rate constant is log k(sec?1) = 9.4 ? 30,800/2.3 RT (Ea in kcal/m). These energetics are compared with those of other 2 + 2 cycloadditions. The major product is 3,4-dimethylenecyclooctene (DC) which is also found from the minor product, cis-7,8-dimethylenebicvyclo[4.2.0]octane (CO), at higher temperatures. The trans isomer, TO, also gives DC at about the same rate as CO.  相似文献   

15.
16.
Thermodynamic data are reported for reaction of tin compounds R3SnCl and R3SnNCS (R = Me, Et, Pt, Bu, Ph) with various bases in benzene solution. R3SnCl form 11, 5-coordinate adducts of low stability with pyridine or 4-methylpyridine; the slightly higher stability of corresponding adducts of R3SnNCS is due to entropy effects. Adducts of R3SnNCS with 1,10-phenanthroline are only a little more stable, showing the reluctance of the tin atom to achieve a coordination number greater than five. N,N,N′,N′-tetramethyl-1,2-diaminoethane gave either 11 adducts or 5-coordinate 12 adducts, depending upon the group R and the concentration of R3SnNCS. Other bases, such as tertiary amines or phosphines also react with R3SnNCS, but in most cases the reactions are complex and probably involve disproportionation and formation of R4Sn.  相似文献   

17.
2-[(Dimethylamino)methyl]phenylcopper tetramer (R4Cu4) forms a red 11 complex (RCu - CuBr)n with cuprous bromide. The 11 interaction of 2-[(dimethylamino)methyl]phenylcopper with cupric halides results in the formation of the dimer RR, the 2-halo-substituted benzylamine R—Halide and minor amounts of N,N-dimethylbenzylamine RH. The formation of these products can be explained on the basis of an intramolecular electron-transfer redox reaction taking place in innersphere activated complexes of the type R4Cu3Cu - - - X - - - CuIIX(CuIIX2)n-1. The course of the metathesis reaction of 2-[(dimethylamino)methyl]phenyllithium with cuprous bromide depends on the order of addition of the reactants. Reversed addition (RLi to CuBr) results in the formation of an inseparable mixture of complexes of the type (RCu)x- (CuBr)y. Upon addition of CuBr to RLi the uncomplexed organocopper compound R4Cu4 is formed.  相似文献   

18.
Thermodynamic data have been obtained by calorimetric titration in benzene solution at 30° for reaction of organotin compounds with Lewis bases; data are reported for forty acid/base systems.Ph3SnCl forms 11 adducts of low stability with pyridine (py) or 4-methyl-pyridine (4-mepy). Ph2SnCl2, Me2SnCl2, Bu2SnCl2 and Bu2Sn(NCS)2 form simultaneously 11 and 12 adducts with py or 4-mepy and 11 adducts with 2,2′-bipyridine or 1,10-phenanthroline (phen); the enthalpies of formation of the phen adducts are similar to those of 12 adducts with 4-mepy. With BuSnCl3 and PhSnCl3 it was not possible to obtain data for each step in addition of pyridine or 4-mepy. Adduct stabilities increase with increasing chloride substitution and in the order Bu < Me < Ph; adducts of Bu2Sn(NCS)2 are more stable than those of Bu2SnCl2.Tributylphosphine does not react with Ph3SnCl but gives 11 adducts with the other tin compounds; only PhSnCl3 adds a second molecule of this base. The 11 adducts are more stable than those with heterocyclic bases. Tributylamine brings about disproportionation of the compounds R2SnX2 to R4Sn and SnX4NBu3.  相似文献   

19.
Reactions of urotropine (C6H12N4) with trimethylmetal derivatives of Al, Ga, In und Tl in various (1114) molar ratios lead to stable and monomeric 11, 12 or 13 adducts in good yields, but no 14 addition product could be isolated. The vibrational spectra (IR and Raman) of all compounds are recorded and partly assigned. Some characteristic frequencies of the C6N4-skeletons clearly show the symmetry changes in the series of the 111213 adducts (CC → C). The X-ray structure determinations of C6H12N4·.GaMe3 (MeCH3) and C6H12N4·.2GaMe3, are in good agreement with the vibrational spectra. Both compounds crystallize in monoclinic space groups (P21 and C2/c). The GaN distances are around 214 pm, and the values for the C6N4-skeletons are not significantly different from those for free urotropine.  相似文献   

20.
Copper(II) and cobalt(II) complexes with 4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-methyl-2-phenylpyrimidine (L) of the general formula MLX2 (M = Cu(II), X = Cl and Br; M = Co(II), X = Cl, Br, and I) were obtained. According to X-ray diffraction data, CuLBr2 and CoLX2 (X = Cl, Br, and I) are mononuclear molecular complexes. The ligand L is coordinated to the metal atom in a chelating bidentate fashion through the N atoms of the pyrimidine and pyrazole rings. The coordination polyhedron of the metal atom is extended to a distorted tetrahedron by two halide ions. In solution, CuLBr2 undergoes slow transformation into CuL(1?x)L′ x Br2 and the binuclear (X-ray diffraction data) Cu(I) complex [CuL(1?x)L′ x Br]2 (L′ is 4-(4-bromo-3,5-dimethyl-1H-pyrazol-1-yl)-6-methyl-2-phenylpyrimidine). The complexes MLX2 show weak antiferromagnetic interactions between the M2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号