首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical shift and 1J(117,119Sn, 13C) data from cross polarization magic angle spinning (CPMAS) proton-decoupled solid-state 13C NMR experiments are given for the methyltin carbon in (Me2SnS)3, Me3SnOAc, Me2S(acetylacetonate)2, Me2SnCl2· 2(dimethylsulfoxide), and amorphous (Me2SnO)n. The relationship between the magnitude of the coupling constant and the coordination at tin is examined by reference to X-ray structure data. The tin-methyl 13C chemical shift was sensitive to slight variations in bond angles and bond lengths. The presence of isotopically abundant NMR-active nuclei in the molecule broadens lines, and can prevent resolution of the J coupled interaction.  相似文献   

2.
Tin-119 and carbon-13 NMR data for a total of 34 compounds containing the grouping Sn-C-Sn (C is either sp3- or sp2-hybridised) are presented and discussed. In organotin derivatives of alkanes, 2J(Sn-C-Sn) can only be correlated with 1J(Sn-C2) if a sign change for the former coupling is assumed. In most of the compounds of this type studied, 1J(Sn-CH3) is, due to rehybridisation and in contrast to the usual situation, larger than 1J(Sn-C2); the same is true in some cases for distannylakenes, the behaviour of which is complicated by changes in the torsional angle about the carbon-carbon double bond. Thus correlation of 2J(Sn-C-Sn) with other spectral parameters is not possible in these cases. The total tin chemical shift range for compounds MenSn(CH2MME3)4-n (M  C, Si, Ge, Sn; n  0–4) is 140 ppm. Incorporation of a ditin fragment in a six-membered ring causes a downfield tin shift of 30 ppm.  相似文献   

3.
All J(P? H) and J(P? C) values, including signs, have been obtained in acetylenic and propynylic phosphorus derivatives, R2P(X)? C?C? H and R2P(X)? C?C? CH3 (X ? oxygen, lone pair and R ? C6H5, N(CH3)2, OC2H5, N(C6H5)2, Cl) from 1H and 13C NMR spectra. In PIV derivatives the following signs are obtained: 1J(P? C)+, 2J(P? C)+, 3J(P? C)+, 3J(P? H)+, 4J(P? H)? . Linear relations are observed between 1J(P? C), 2J(P? C) and 3J(P? C) versus 3J(P? H), indicating that these coupling constants are mainly dependent on the Fermi contact term, though the other terms of the Ramsey theory do not seem to be negligible for 1J(P? C) and 2J(P? C). In PIII derivatives these signs are: 1J(P? C)- and +, 2J(P? C)+, 3J(P? C)-, 3J(P? H)-, 4J(P? H)+. Only 3J(P? C) and 3J(P? H) reflect a small contribution of the Fermi contact term while in 1J(P? C) and 2J(P? C) this contribution seems to be negligible relative to the orbital and/or spin dipolar coupling mechanisms.  相似文献   

4.
High‐resolution solid‐state 109Ag and 31P NMR spectroscopy was used to investigate a series of silver dialkylphosphite salts, Ag(O)P(OR)2 (R = CH3, C2H5, C4H9 and C8H17), and determine whether they adopt keto, enol or dimer structures in the solid state. The silver chemical shift, CS, tensors and |J(109Ag, 31P)| values for these salts were determined using 109Ag (Ξ = 4.652%) NMR spectroscopy. The magnitudes of J(109Ag, 31P) range from 1250 ± 10 to 1318 ± 10 Hz and are the largest reported so far. These values indicate that phosphorus is directly bonded to silver for all these salts and thus exclude the enol structure. All 31P NMR spectra exhibit splittings due to indirect spin–spin coupling to 107Ag (I = 1/2, NA = 51.8%) and 109Ag (I = 1/2, NA = 48.2%). The 1J(109Ag, 31P) values measured by both 109Ag and 31P NMR spectroscopy agree within experimental error. Analysis of 31P NMR spectra of stationary samples for these salts allowed the determination of the phosphorus CS tensors. The absence of characteristic P?O stretching absorption bands near 1250 cm?1 in the IR spectra for these salts exclude the simple keto tautomer. Thus, the combination of solid‐state NMR and IR results indicate that these silver dialkylphosphite salts probably have a dimer structure. Values of silver and phosphorus CS tensors as well as 1J(109Ag, 31P) values for a dimer model calculated using the density functional theory (DFT) method are in agreement with the experimental observations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Proton NMR data at 100 MHz are reported for thirteen para- and meta-substituted phenyltrimethyltin compounds, XC6H4Sn(CH3)3, where X = para-N(CH3)2, para-OCH3, para-OC2H5, para-CH3, meta-CH3, -H, para-F, meta-OCH3, para-Cl, para-Br, meta-F, meta-Cl and para-Sn(CH3)3. Correlation coefficients with Hammett σ-constants of greater than 0.95 are obtained with the methyltin proton chemical shifts and coupling constants to carbon [1J(13C1H)] and tin [2J(SnC1H)]. Solvent effects and other extraneous factors invalidate comparisons of ? values in terms of the relative attenuation of the transmission of substituent effects through homologous carbon, silicon, germanium and tin systems, but coupling constant data reflect a diminution of ca. one tenthfold per bond in the order ?[C(1)Sn] > ? [SnC] > ? [CH]. Satisfactory correlations (r > 0.95) are obtained in this series of closely-related compounds among the conventionally recorded two-bond, 2J(SnC1H) and the constituent, one-bond 1J (Sn13C) and J(13C1H) coupling constants, but the correlation coefficient for the comparison between the two one-bond couplings, 1J(Sn13C) and 1J(13C1H) is lower (r = 0.872). Changes in the couplings at the methyltin carbon bond tin-119 atoms are interpreted in terms of isovalent hybridization; a model based upon effective nuclear charges is tested with respect to both NMR coupling constants and 119Sn Mössbauer Isomer shifts at tin and is invalidated. Proton and carbon-13 NMR, chemical shift and coupling constant data are used to derive a Hammett σ-constant for the para-trimethyltin group of ?0.14, and the significance of this value is discussed.  相似文献   

6.
195Pt, 119Sn and 31P NMR characteristics of the complexes trans-[Pt(SnCl3)(carbon ligand)(PEt3)2] (1a-1e) are reported, (carbon ligand = CH3 (1a), CH2Ph (1b), COPh (1c), C6Cl5 (1d), C6Cl4Y (e); Y = meta- and para-NO2, CF3, Br, H, CH3, OCH3, or Pt(SnCl3)(PEt3)2. The values of 1J(195Pt, 119Sn) vary from 2376 to 11895 Hz with the COPh ligand having the smallest and the C6Cl5 ligand the largest value, making a total range for this coupling constant, when the dimer syn-trans-[PtCl(SnCl3)(PEt3)]2 is included, of ca. 33000 Hz. In the meta- and para-substituted phenyl complexes 1J(195Pt, 119Sn) (a) is greater for electron-withdrawing substituents, (b) varies more for the meta-substituted derivatives (5634 to 7906 Hz) than for the para analogues (6088 to 7644 Hz) and (c) has the lowest values when the Pt(SnCl3)(PEt3)2 group is the meta- or para-substituent. The direction of the change in 1J(195Pt, 119Sn) is opposite to that found for 1J(195Pt, 119P). For the aryl complexes linear correlations are observed between δ(119Sn), 1J(195Pt, 119Sn), 1J(195Pt, 31P), 1J(119Sn, 31P) and the Hammett substituent constant σn. δ(119Sn) and 1J(195Pt, 119Sn) are related linearly to v(Pt-H) in the complexes trans-[PtH(C6H4Y)(PEt3)2]; δ(119Sn) and δ(1H) (hydride) are also linearly related. Based on 1J(195Pt, 119Sn), the acyl ligand is suggested to have a very large NMR trans influence. The differences in the NMR parameters for (1a-e) are rationalized in terms of differing σ- and π-bonding abilities of the carbon ligands.The structure of 1c has been determined by crystallographic methods. The complex has a slightly distorted square planar geometry with trans-PEt3 ligands. Relevant bond lengths (Å) and bond angles (°) are: PtSn, 2.634(1), PtP, 2.324(4) and 2.329(4), PtC, 2.05(1); PPtP, 170.7(6), SnPtC, 173.0(3), SnPtP, 92.1(1), 91.7(1), PPtC, 88.8(4) and 88.3(4). The PtSn bond separation is the longest yet observed for square-planar platinum trichlorostannate complexes, and would be consistent with a large crystallographic trans influence of the benzoyl ligand. The PtSn bond separation is shown to correlate with 1J(195Pt, 119Sn).  相似文献   

7.
Internally consistent assignments of the 31P-{1H} NMR parameters of the complexes [Pt(RCCR′)(PPh3)2] are proposed, based on the premise that the magnitude of 1J(PtP) depends mainly on the nature of the moiety CR trans to P. For a given R, 2J(PP) correlates with 1J(PtP) for thebond trans to CR. The alkynes PhCCSnEt3, PhCCSnPh3, Me3SiCCCl, Me3SiCCBr, Et3SiCCI and MeCCI undergo oxidative addition reactions with [Pt(C2H4)(PPh3)2]; the intermediate alkyne complex was detected for PhCCSnEt3, Me3SiCCCl and Me3CCBr. The triyne Me(CC)3Me forms platinum(0) complexes by coordination with the central or terminal CC bond and appears also to give a platinum(II) complex by oxidative addition.  相似文献   

8.
1J(13C?13C) nuclear spin–spin coupling constants in derivatives of acetylene have been measured from natural abundance 13C NMR spectra and in one case (triethylsilyllithiumacetylene) from the 13C NMR spectrum of a 13C-enriched sample. It has been found that the magnitude of J(C?C) depends on the electronegativity of the substituents at the triple bond. The equation 1J(13C?13C) = 43.38 Ex + 17.33 has been derived for one particular series of the compounds Alk3SiC?CX, where X denotes Li, R3Sn, R3Si, R3C, I, Br or Cl. The 1J(C?C) values found in this work cover a range from 56.8 Hz (in Et3SiC?Li) to 216.0 Hz (in PhC?CCI). However, the 1J(C?C) vs Ex equation combined with the Egli–von Philipsborn relationship allows the calculation of the coupling constants in Li2C2 (32 Hz) and in F2C2 (356 Hz). These are probably the lowest and the highest values, respectively, which can be attained for 1J(CC) across a triple bond. The unusually large changes of the 1J(C?C) values are explained in terms of substituent effects followed by a re-hybridization of the carbons involved in the triple bond. INDO FPT calculations performed for two series of acetylene derivatives, with substituents varied along the first row of the Periodic Table, corroborate the conclusions drawn from the experimental data.  相似文献   

9.
13C chemical shifts and 31P? 13C spin–spin coupling constants are reported for 10 alkyl-, 20 benzyl- and 3 (naphthylmethyl)-phosphonates. While in saturated aliphatic chains P–C couplings over more than four bonds cannot be resolved, couplings over up to seven bonds are observed in the benzyl type systems. Conformational and substituent effects on J(PC) are studied and discussed. nJ(PF) (n = 4, 5, 6) are reported for the isomeric (fluorobenzyl)phosphonates and nJ(PP) (n = 5, 6, 7) were obtained from the 13C satellites in the 31P n.m.r. spectra of the isomeric diphosphonates, C6H4[CH2P(O)(OEt)2]2. Comparison of those 13C absorptions of the latter, which represent the X parts of ABX or AA′X spin systems, with the spectra of the corresponding (methylbenzyl)phosphonates, CH3C6H4CH2P(O)(OEt)2, yielded the relative signs of nJ(PC) (n = 2–6).  相似文献   

10.
Several 1:1 adducts of gallium trihalides with triarylphosphines, X3Ga(PR3) (X=Cl, Br, and I; PR3=triarylphosphine ligand), were investigated by using solid‐state 69/71Ga and 31P NMR spectroscopy at different magnetic‐field strengths. The 69/71Ga nuclear quadrupolar coupling parameters, as well as the gallium and phosphorus magnetic shielding tensors, were determined. The magnitude of the 71Ga quadrupolar coupling constants (CQ(71Ga)) range from approximately 0.9 to 11.0 MHz . The spans of the gallium magnetic shielding tensors for these complexes, δ11?δ33, range from approximately 30 to 380 ppm; those determined for phosphorus range from 10 to 40 ppm. For any given phosphine ligand, the gallium nuclei are most shielded for X=I and least shielded for X=Cl, a trend previously observed for InIII–phosphine complexes. This experimental trend, attributed to spin‐orbit effects of the halogen ligands, is reproduced by DFT calculations. The signs of CQ(69/71Ga) for some of the adducts were determined from the analysis of the 31P NMR spectra acquired with magic angle spinning (MAS). The 1J(69/71Ga,31P) and ΔJ(69/71Ga, 31P) values, as well as their signs, were also determined; values of 1J(71Ga,31P) range from approximately 380 to 1590 Hz. Values of 1J(69/71Ga,31P) and ΔJ(69/71Ga,31P) calculated by using DFT have comparable magnitudes and generally reproduce experimental trends. Both the Fermi‐contact and spin‐dipolar Fermi‐contact mechanisms make important contributions to the 1J(69/71Ga,31P) tensors. The 31P NMR spectra of several adducts in solution, obtained as a function of temperature, are contrasted with those obtained in the solid state. Finally, to complement the analysis of NMR spectra for these adducts, single‐crystal X‐ray diffraction data for Br3Ga[P(p‐Anis)3] and I3Ga[P(p‐Anis)3] were obtained.  相似文献   

11.
Organomercuric compounds of the general formula
and [RCOCH(R′)]2Hg, obtained from three ketones, 2,2-dimethyl 3-pentanone, 1-mesityl 1-propanone and 1-mesityl 1-ethanone, have been studied by 13C and 199Hg NMR techniques. Coupling constants J(CHg) and J(HgH) are consistent with C-metalated species; in each case the values of δ(C(2)) and J(C(2)H) observed are higher than expected for purely sp3 carbon. The contribution of O-metalated species and hyperconjugative effects are discussed. For two dioxomercuric compounds (R′  Me, R  t-Bu, mesityl) the existence of diastereoisomers is suggested from 199Hg NMR data.  相似文献   

12.
The 1H, 13C and 31P NMR data of several 2-R-2-thiono-1,3-dioxa organophosphorus molecules with 7-membered rings [R = Cl, OC6H5, C6H5, CH3, N(CH3)2] are reported. The conformation of the 7-membered ring is discussed by reference to the 3J(POCH) coupling constants which are compared with those observed in 6-membered 1,3,2-dioxaphosphorinanes. It is shown that caution must be exercised in using the 3J(POCH) angular dependence as a stereochemical tool. The 31P spin lattice relaxation times of some of these 7-membered rings have been measured and the values are discussed.  相似文献   

13.
Reactions of [Pt2(μ-Cl)2(CP)2] (CP = CH2C(Me2)PBut2-C,P) with various anionic ligands differing in ligand bite and denticity have been investigated and the resulting products have been characterized by elemental analyses and NMR (1H, 13C, 31P, 195Pt) spectroscopy. Stereochemistry of the complexes has been deduced by NMR spectroscopy. Structures of [Pt2(μ-SPh)2(CP)2], [Pt2(μ-pz)2(CP)2], [PtCl(Spy)(PBut3)], [Pt2(μ-SCOPh)2(CP)2] and [Pt{S2P(OPri)2}(CP)] have been established by single crystal X-ray diffraction analyses. The complex [Pt2(μ-SPh)2(CP)2] adopts a sym cis configuration while other binuclear complexes exist in a sym trans configuration. The molecular structure of [Pt{S2P(OPri)2}(CP)] revealed that complex comprises of two four-membered chelate rings but in solution a dimeric structure based on 195Pt NMR data has been suggested.  相似文献   

14.
Phosphoryl chloride is used as a starting material to synthesize new diazaphosphole, (1) and diazaphosphorinane, (2). The products are characterized by 1H, 13C, 31P NMR, and IR spectroscopy. A high value 2 J(PNH) = 17.0 Hz, 17.2 Hz is measured for two non-equivalent NH protons of endocyclic nitrogen atoms in compound 1, while it greatly decreases to 4.5 Hz in 2. Also, great amounts are obtained for two 2 J(P,C) as well as two 3 J(P,C) in the 13C NMR spectrum of 1, but they are zero in 2. Here, the effect of ring strain and ring size on the structural and spectroscopic parameters is observed. The 31P NMR spectra reveal that δ(31P) of compound 1 is far much more downfield (12.63 ppm) relative to that of compound 2 (−10.39 ppm). Furthermore, ab initio quantum chemical calculations are performed to optimize the structures of these molecules by density functional theory (B3LYP) and Hartree-Fock (HF) methods, using the standard 6−31+G** basis set. The stabilization energies are calculated by the equation ΔE stabilization = E molecule − ΣE i , where i = atom. To obtain the atomic hybridizations, NBO computations are made at the B3LYP/6−31+G** level. Also, by NMR calculations the 1H, 13C, 31P chemical shifts are obtained and compared with the experimental ones.  相似文献   

15.
Abstract

The 15N, 31P and 31C NMR spectra of several series of phospha-λ5-azenes are reported. For the N-arylsulfonyl-P,P,P-triphenylphospha-δ5-azene series (R-C6H4N-SO2-PPh3), the 31P chemical shifts, various 13C chemical shifts and 1JPN were observed to correlate linearly with the Hammett σ constants. Interestingly, the 15N chemical shifts did not correlate acceptably with any σ or with the Taft dual substituent parameter equation, and 1JPC was invariant with substituent. For the N-arylcarbonyl-P,P,P-triphenylphospha-λ5-azene series (R-C6H4-CO-N=PPh3), δ31P and various δ13C's were observed to linearly correlate with the δ constants, while δ15N, 1JPN and 1JPC correlated with both the σ and σ constants. For the N-phenyl-P,P,P-triarylphospha-λ5-azene series [Ph-N=P(C6H4-R)3] the best correlations were observed between 31P, 15N and several 13C chemical shifts and the σ constants.  相似文献   

16.
Results of IR and 1H, 13C, and 31P NMR studies of the anancomeric title compounds ( 2–5 ) and compound 1 (Scheme 1) are analyzed to search for the existence of high-energy boat or twist-boat conformations in the equatorial epimers. While the difference in frequencies (Δν)P=O between the axial and equatorial compounds and 13C NMR JPOCC and anti JPOCCH3 values suggest the participation of twist-boat conformations for the equatorial isomers, coupling constants in 1H NMR JH4H5a or JH6H5a and JH4H5e or JH6H5e of the equatorial isomers 2e–4e along with the lack of a large 3JPH in 31P NMR are consistent with predominant chair conformations. In addition, an X-ray structure of the equatorial 2-p-nitrophenoxy-2-oxo-cis-4,6-dimethyl-1,3,2-dioxaphosphorinane ( 4e ) showed that the molecule adopts a chair conformation with no severe ring flattening in the OPO region in the solid state. X-ray structures of trans- 4 and trans- 5 displayed chair conformations with mild ring flattening especially in the axial methyl region, presumably as a result of the steric methyl-oxygen interaction. CPMAS 13C and 31P NMR spectra of 4a and 4e provide evidence against the presence of a significant contribution of a twist-boat conformation in solid equatorial 4e . The NMR spectral analysis of 1e , on the other hand, suggests a substantial contribution of a twist conformation as well as, possibly, some contribution of the inverted chair. © 1997 John Wiley & Sons, Inc. Heteroatom Chem 8: 509–516, 1997  相似文献   

17.
The 1H and 13C NMR spectra of 1,2-dibromoethane-13C2 have been analyzed to determine the magnitude (38·9 Hz) and sign (positive) of 1J(C? C) relative to those of 3J(H? H) (positive). This type of coupling appears to be rather insensitive to the presence of bromine or methyl as substituents on the carbons.  相似文献   

18.
1J(15N13C) values obtained from FT 13C NMR spectra were measured for a number of 15N-enriched aniline derivatives and are found to exhibit varying degrees of dependence on the nature of the ring substituent. Theoretical calculations of 1J(15N13C) values for representative members of the systems examined were made using INDO parameters and a ‘sum-over-states’ perturbation approach. The calculated coupling constants are generally in fair agreement with experimental values when the integral products SN2(o)SC2(o) and (r?3)N(r?3)C have values of 34.437 au?6 and 2.770 au?6, respectively.  相似文献   

19.
Selective oxidation of one (trans to N) carbonyl group in [Rh(8-Oxiquinolinato)(CO)2] with stoichiometric amount of Me3NO in MeCN produces a solution containing [Rh(Oxq)(CO)(Me3N)] and [Rh(Oxq)(CO)(MeCN)]. The ammonia complex, [Rh(Oxq)(CO)(NH3)], has been prepared by action of NH3 gas on this solution and characterized by IR, 1H and 13C NMR, and X-ray data. Spectral parameters, ν(CO), δ13C, and 1J(CRh), were measured in situ for a series of complexes [Rh(Oxq)(CO)(L)] (L = NAlk3, Py, PBu3, PPh3, P(OPh)3, C8H14) formed upon action of L on [Rh(Oxq)(CO)(NH3)] in THF. A new ν(CO) and δ13C based scale of σ-donor/π-acceptor properties of ligands L is proposed including NH3 and CO as the natural endpoints.  相似文献   

20.
In 2-trifluoromethylphenyldifluorophosphine the proximate couplings 4J(19F31P) and 5J(19F19F) are + 68.3 and + 8.3 Hz, respectively. 1J(13C31P) is ?57.0 Hz, 2J(13C-1, 10F) is + 9.9 Hz and 2J(13C-6, 13C-6, 31P) is + 10.1 Hz. The trifluoromethyl substituent induces substantial changes in some coupling constants, particularly those between the 31P and ring 13C nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号