首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of competitive phenylation of alkenes with iodobenzene over palladium complexes (the Heck reaction) was studied. The effect of one alkene on the arylation rate of another alkene conflicts with the conventional mechanism of the Heck reaction in which the arylated alkene is formed through the unimolecular step of palladium hydride -elimination. Based on experimental data obtained, another mechanism is proposed in which a reaction product is formed through the transfer of palladium hydride to the initial alkene molecule.  相似文献   

2.
吕文阳  李明  申伟  罗小玲  翟巧玲  黄浩 《化学学报》2006,64(13):1367-1372
用密度泛函方法(DFT)研究了Pd(II)含氮配合物催化烯烃芳基化反应的机理. 结果表明, 该反应是放热的, 主要经历了对甲苯基对烯烃的迁移插入和β-H的还原消去. 对甲苯基对烯烃的迁移插入是反应的速率控制步骤和手性控制步骤. 理论预测的产物是与实验一致的(R)-2-甲基-2-苯基环戊酮.  相似文献   

3.
Substituted benzene derived meta photocycloadducts have been shown to undergo a fragmentation/arylation reaction under Heck reaction conditions to give bridged bicyclo[3.2.1] compounds in a highly atom-efficient manner. When an anisole derived meta photocycloadduct is used, a bridgehead ketone is generated. However, if an alkylbenzene derived meta photocycloadduct is used, a bridgehead alkene is formed. This strategy has been used to create novel enol ether and transient allyl silane compounds.  相似文献   

4.
The main steps of the catalytic cycle of the alkene arylation reaction with the participation of anhydrides of aromatic acids as arylation agents were studied by 31P NMR spectroscopy. In contrast to the mechanism proposed earlier, palladium complexes containing benzoate anions as acidoligands were not found in the reaction mixture. It was found that the catalytic cycle of the reaction includes the steps of oxidative addition of Pd(0) formed in situ to the anhydride of acid, the substitution of acidoligand, and the elimination of the CO molecule. Further transformations probably take place according to the usual steps of the Heck reaction. It was shown that CO elimination is a limiting step.  相似文献   

5.
PdII/CuI co-catalyze an arylation reaction of gem-difluoroalkenes using arylsulfonyl chlorides to deliver α,α-difluorobenzyl products. The reaction proceeds through a β,β-difluoroalkyl–Pd intermediate that typically undergoes unimolecular β-F elimination to deliver monofluorinated alkene products in a net C–F functionalization reaction. However to avoid β-F elimination, we offer the β,β-difluoroalkyl–Pd intermediate an alternate low-energy route involving β-H elimination to ultimately deliver difluorinated products in a net arylation/isomerization sequence. Overall, this reaction enables exploration of new reactivities of unstable fluorinated alkyl–metal species, while also providing new opportunities for transforming readily available fluorinated alkenes into more elaborate substructures.

PdII/CuI co-catalyze a desulfitative arylation of aliphatic gem-difluoroalkenes in a radical arylation/migratory insertion sequence that avoids β-F elimination.  相似文献   

6.
Treatment of aromatic aldimines with terminal alkenes in the presence of a rhenium catalyst, [HRe(CO)4]n, gives 2-alkenylbenzylamines in good to excellent yields. This reaction proceeds via the insertion of the alkene into a C-H bond at the ortho-position of the imino group of the aromatic aldimine followed by sequential β-hydride elimination from the formed alkyl rhenium intermediate and then by hydrogenation of the imino group of the aldimine.  相似文献   

7.
The versatile preparation of trisubstituted alkenes via selective Rh-catalyzed arylation of alkynes is described in water and in a water/toluene biphasic system. For hydrophobic alkyl alkynes, the reaction afforded either alkenes or dienes depending on the temperature and the solvent conditions. Aryl, heteroaryl, silylated and alkyl substituted alkynes reacted equally well with various boronic acids, leading regioselectively to functionalized alkenyl derivatives in high yields (65-99%). The mechanism was investigated in toluene/water mixture or water and involves a vinylrhodium complex. The efficient recycling of the Rh/m-TPPTC system is disclosed with excellent yield (92-96%) and purity of the alkene.  相似文献   

8.
We have found that the use of [Rh(cod)OH]2 associated with the water-soluble ligand m-TPPTC was highly efficient for the Rh-catalyzed arylation of alkynes. Aryl and alkyl alkynes were transformed to alkenes using 3 mol % rhodium catalyst and 2.5 equiv of boronic acid at 100 °C in a biphasic water/toluene system in 80-99% yield. The reaction was found to be totally regioselective for alkyl arylalkynes and alkyl silylated alkynes. The Rh/m-TPPTC system was for the first time recycled with no loss of the activity and with excellent purity of the desired alkene.  相似文献   

9.
The synthesis of 9-borafluorene with an electron-withdrawing o-carboranyl substituent and its reactions with a series of alkenes are described. The o-carboranyl substituent is bonded via one of the cluster carbon atoms to the boron atom of the 9-borafluorene moiety. In all cases, the reactions afford partly saturated analogs of borepins (i.e. 6,7-dihydroborepins) by unprecedented alkene insertion into the endocyclic B–C bond of the borole ring. Comparative studies with 9-bromo-9-borafluorene illustrate the superior insertion reactivity of the carboranyl-substituted derivative. A suite of experimental and computational techniques disclose the unique properties of the 9-borafluorene and provide insight into how the 9-carboranyl substituent affects its chemical reactivity.

A 9-carboranyl-substituted 9-borafluorene is reported, which is capable of undergoing efficient ring expansion to 6,7-dihydroborepins by a previously unknown alkene insertion.  相似文献   

10.
Alkene insertion into Pd-N bonds is a key step in Pd-catalyzed oxidative amidation of alkenes. A series of well-defined Pd(II)-sulfonamidate complexes have been prepared and shown to react via insertion of a tethered alkene. The Pd-amidate and resulting Pd-alkyl species have been crystallographically characterized. The alkene insertion reaction is found to be reversible, but complete conversion to oxidative amination products is observed in the presence of O(2). Electronic-effect studies reveal that alkene insertion into the Pd-N bond is favored kinetically and thermodynamically with electron-rich amidates.  相似文献   

11.
An alkyne tetracarbonyl dicobalt complex with a chelated phosphine–alkene ligand, in which the phosphorus atom and the alkene from the ligand are attached to the same cobalt atom has been prepared, isolated, and characterized by X‐ray crystallography. The complex serves as a mechanistic model for an intermediate of the Pauson–Khand (PK) reaction. Although the alkene fragment is located in an equatorial coordination site with an appropriate orientation, and, therefore, should undergo insertion, it failed to give the PK product upon either thermal or N‐methylmorpholine N‐oxide activation. However, a phosphine–alkene complex that contains a terminal alkene readily provided the corresponding PK product. We attribute this change in reactivity to the different ability of each olefin to undergo 1,2‐insertion. These results provide further insights into the factors that govern a crucial step in the PK reaction, the olefin insertion.  相似文献   

12.
The complete catalytic cycle of the reaction of alkenes and alkynes to dienes by Grubbs ruthenium carbene complexes has been modeled at the B3LYP/LACV3P**+//B3LYP/LACVP level of theory. The core structures of the substrates and the catalyst were used as models, namely, ethene, ethyne, hept-1-en-6-yne, (Me(3)P)(2)Cl(2)Ru=CH(2), and [C(2)H(4)(NMe)(2)C](Me(3)P)Cl(2)Ru=CH(2). Insight into the electronically most preferred mechanistic pathways was gained for both intermolecular as well as for intramolecular enyne metathesis. Alkene metathesis is predicted to proceed fast and reversible, while the insertion of the alkyne substrate is slower, irreversible, and kinetically regioselectivity determining. Ruthenacyclobut-2-ene structures do not exist as local minima in the catalytic cycle. Instead, vinylcarbene complexes are formed directly. The alkyne insertion step and the cycloreversion of 2-vinyl ruthenacyclobutanes feature comparable predicted overall barriers in intermolecular enyne metathesis. For intramolecular enyne metathesis, a noncyclic alkene fragment of the enyne substrate is first incorporated into the Grubbs catalyst by an alkene metathesis reaction. The subsequent insertion of the alkyne fragment then proceeds intramolecularly. Alkene association, cycloaddition, and cycloreversion to the diene product complex close the catalytic cycle. Rate enhancement by an ethene atmosphere (Mori's conditions) originates from a constantly higher overall alkene concentration that is necessary for the rate-limiting [2 + 2] cycloreversion step to the diene product complex.  相似文献   

13.
The use of diazonium salts for aryl radical generation and C? H arylation processes has been known since 1896 when Pschorr first used the reaction for intramolecular cyclizations. Meerwein developed it further in the early 1900s into a general arylation method. However, this reaction could not compete with the transition‐metal‐mediated formation of C(sp2)? C(sp2) bonds. The replacement of the copper catalyst with iron and titanium compounds improved the situation, but the use of photocatalysis to induce the one‐electron reduction and activation of the diazonium salts is even more advantageous. The first photocatalyzed Pschorr cyclization was published in 1984, and just last year a series of papers described applications of photocatalytic Meerwein arylations leading to aryl–alkene coupling products. In this Minireview we summarize the origins of this reaction and its scope and applications.  相似文献   

14.
Three mechanistic pathways for the [Ind(2)TiMe(2)]-catalyzed intramolecular hydroamination of alkenes have been investigated by employing density functional theory calculations on the possible intermediates and transition states. The results indicate that the reaction cycle proceeds via a Ti-imido-amido complex as the catalytically active species. However, at the moment, the question as to whether this imido-amido complex is involved in a [2+2]-cycloaddition with the alkene or a newly proposed insertion of the alkene into a Ti--N single bond cannot be answered; the calculated barriers of both the insertion mechanism and the [2+2]-cycloaddition mechanism are similar (143 vs. 136 kJ mol(-1)), and both pathways are in accordance with the experimentally observed rate law (first-order dependence on the aminoalkene concentration). Interestingly, the newly proposed insertion mechanism that takes place by an insertion of the alkene moiety into the Ti--N single bond of an imido-amido complex seems to be much more likely than a mechanism that involves an alkene insertion into a Ti--N single bond of a corresponding trisamide. The latter mechanism, which has been proposed in analogy to rare-earth-metal-catalyzed hydroamination reactions, can be ruled out for two reasons: a surprisingly high activation barrier (164 kJ mol(-1)) and the fact that the rate-limiting insertion step is independent of the aminoalkene concentration. This is in sharp contrast to the experimental findings for indenyltitanium catalysts.  相似文献   

15.
We report here the results of a computational study on the the mechanism of the Oppolzer cyclization. These results lead us to conclude that the insertion of olefins in Pd-allyl complexes probably takes place directly from the eta(3)-allyl species. The presence of a phosphane ligand in the reagents plays the role of enhancing the electron density on the Pd atom; this makes the alkene moiety more reactive towards insertion by back-donation from the metal. The results also indicate that the configuration of the new stereogenic centers is fixed in the insertion of the alkene into the (eta(3)-allyl)palladium species.  相似文献   

16.
The results of studying homogeneous and heterogeneous catalytic systems for alkene arylation (the Heck reaction) illustrate the influence of the main catalytic cycle on the efficiency of the formation and regeneration of catalytically active species. When both homogeneous and heterogeneous precursors are used, the formation process becomes possible or is intensified only in the presence of the catalytic reaction.  相似文献   

17.
The palladium‐catalyzed β‐arylation of ester enolates with aryl bromides was studied both experimentally and computationally. First, the effect of the ligand on the selectivity of the α/β‐arylation reactions of ortho‐ and meta‐fluorobromobenzene was described. Selective β‐arylation was observed for the reaction of o‐fluorobromobenzene with a range of biarylphosphine ligands, whereas α‐arylation was predominantly observed with m‐fluorobromobenzene for all ligands except DavePhos, which gave an approximate 1:1 mixture of α‐/β‐arylated products. Next, the effect of the substitution pattern of the aryl bromide reactant was studied with DavePhos as the ligand. We showed that electronic factors played a major role in the α/β‐arylation selectivity, with electron‐withdrawing substituents favoring β‐arylation. Kinetic and deuterium‐labeling experiments suggested that the rate‐limiting step of β‐arylation with DavePhos as the ligand was the palladium–enolate‐to‐homoenolate isomerization, which occurs by a β? H‐elimination, olefin‐rotation, and olefin‐insertion sequence. A dimeric oxidative‐addition complex, which was shown to be catalytically competent, was isolated and structurally characterized. A common mechanism for α‐ and β‐arylation was described by DFT calculations. With DavePhos as the ligand, the pathway leading to β‐arylation was kinetically favored over the pathway leading to α‐arylation, with the palladium–enolate‐to‐homoenolate isomerization being the rate‐limiting step of the β‐arylation pathway and the transition state for olefin insertion its highest point. The nature of the rate‐limiting step changed with PCy3 and PtBu3 ligands, and with the latter, α‐arylation became kinetically favored. The trend in selectivity observed experimentally with differently substituted aryl bromides agreed well with that observed from the calculations. The presence of electron‐withdrawing groups on these bromides mainly affected the α‐arylation pathway by disfavoring C? C reductive elimination. The higher activity of the ligands of the biaryldialkylphosphine ligands compared to their corresponding trialkylphosphines could be attributed to stabilizing interactions between the biaryl backbone of the ligands and the metal center, thereby preventing deactivation of the β‐arylation pathway.  相似文献   

18.
Yip KT  Yang D 《Organic letters》2011,13(8):2134-2137
Stereoselective palladium-catalyzed synthesis of structurally versatile indoline derivatives, using molecular oxygen as the sole oxidant, is described. New C-N and C-C bonds form across an alkene in an intramolecular manner. The C-N bond-forming step proceeds via a syn-amidopalladation pathway. The moderate kinetic isotope effects (intramolecular KIE = 3.56) suggest that electrophilic aromatic substitution occurs in the arylation step.  相似文献   

19.
This work performed a theoretical investigation to explore the mechanism and reactivity of the Co-mediated intramolecular Pauson-Khand reaction for constructing bicyclo-skeletons.  相似文献   

20.
Described herein is an IrIII/porphyrin‐catalyzed intermolecular C(sp3)?H insertion reaction of a quinoid carbene (QC). The reaction was designed by harnessing the hydrogen‐atom transfer (HAT) reactivity of a metal‐QC species with aliphatic substrates followed by a radical rebound process to afford C?H arylation products. This methodology is efficient for the arylation of activated hydrocarbons such as 1,4‐cyclohexadienes (down to 40 min reaction time, up to 99 % yield, up to 1.0 g scale). It features unique regioselectivity, which is mainly governed by steric effects, as the insertion into primary C?H bonds is favored over secondary and/or tertiary C?H bonds in the substituted cyclohexene substrates. Mechanistic studies revealed a radical mechanism for the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号