首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylation is an essential metabolic process in the biological systems, and it is significant for several biological reactions in living organisms. Methylated compounds are known to be involved in most of the bodily functions, and some of them serve as biomarkers. Theoretically, all α‐amino acids can be methylated, and it is possible to encounter them in most animal/plant samples. But the analytical data, especially the mass spectral data, are available only for a few of the methylated amino acids. Thus, it is essential to generate mass spectral data and to develop mass spectrometry methods for the identification of all possible methylated amino acids for future metabolomic studies. In this study, all N‐methyl and N,N‐dimethyl amino acids were synthesized by the methylation of α‐amino acids and characterized by a GC‐MS method. The methylated amino acids were derivatized with ethyl chloroformate and analyzed by GC‐MS under EI and methane/CI conditions. The EI mass spectra of ethyl chloroformate derivatives of N‐methyl ( 1–18 ) and N,N‐dimethyl amino acids ( 19–35 ) showed abundant [M‐COOC2H5]+ ions. The fragment ions due to loss of C2H4, CO2, (CO2 + C2H4) from [M‐COOC2H5]+ were of structure indicative for 1–18 . The EI spectra of 19–35 showed less number of fragment ions when compared with those of 1–18 . The side chain group (R) caused specific fragment ions characteristic to its structure. The methane/CI spectra of the studied compounds showed [M + H]+ ions to substantiate their molecular weights. The detected EI fragment ions were characteristic of the structure that made easy identification of the studied compounds, including isomeric/isobaric compounds. Fragmentation patterns of the studied compounds ( 1–35 ) were confirmed by high‐resolution mass spectra data and further substantiated by the data obtained from 13C2‐labeled glycines and N‐ethoxycarbonyl methoxy esters. The method was applied to human plasma samples for the identification of amino acids and methylated amino acids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
With the future aim of elucidating the unknown structures of estrogen degradation products, we characterized the dissociation pathways of protonated estrone (E1) under collisional activation in liquid chromatography/tandem mass spectrometry (LC/MS/MS) experiments employing a quadrupole time‐of‐flight mass spectrometer. Positive ion and negative ion modes give information on the protonated and deprotonated molecules and their product ions. The mass spectra of estrone methyl ether (CH3‐E1) and estrone‐d4 (E1‐d4) were compared with that of E1 in order (i) to elucidate the dissociation mechanisms of protonated and deprotonated molecules and (ii) to propose likely structures for each product ions. The positive ion acquisition mode yielded more fragmentation. The mass spectra of E1 were compared with those of estradiol (E2), estriol (E3) and 17‐ethynylestradiol (EE2). This comparison allowed the identification of marker ions for each ring of the estrogenic structure. Accurate mass measurements have been carried out for all the identified ions. The resulting ions revealed to be useful for the characterization of structural modifications induced by photolysis on each ring of the estrone molecule. These results are very promising for the determination of new metabolites in the environment. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
《Tetrahedron letters》1988,29(44):5633-5636
There are not only strongly crowded “proton sponges” that show characteristic [M-Me2NH-H]+ peaks corresponding to cyclization to stable, even electron heterocyclic ions under EI. Fragmentation of title compounds which are moderately strong, not very crowded bases also leads to abundant [M-Me2NH-H]+ phenanthridinium ions, as shown by linked scans, exact mass measurements, MS/MS and collisionally activated dissociation (CAD) mass spectra.  相似文献   

4.
Like many new designer drugs of abuse, synthetic cannabinoids (SC) have structural or positional isomers which may or may not all be regulated under law. Differences in acute toxicity may exist between isomers which impose further burden in the fields of forensic toxicology, medicine and legislation. Isomer differentiation therefore becomes crucial from these standpoints as new designer drugs continuously emerge with just minor positional modifications to their preexisting analogs. The aim of this study was to differentiate the positional isomers of JWH‐081. Purchased standard compounds of JWH‐081 and its positional isomers were analyzed by gas chromatography‐electron ionization‐mass spectrometry (GC‐EI‐MS) first in scan mode to investigate those isomers who could be differentiated by EI scan spectra. Isomers with identical or near‐identical EI spectra were further subjected to GC‐tandem mass spectrometry (MS/MS) analysis with appropriate precursor ions. EI scan was able to distinguish 3 of the 7 isomers: 2‐methoxy, 7‐methoxy and 8‐methoxy. The remaining isomers exhibited near‐identical spectra; hence, MS/MS was performed by selecting m/z 185 and 157 as precursor ions. 3‐Methoxy and 5‐methoxy isomers produced characteristic product ions that enabled the differentiation between them. Product ion spectrum of 6‐methoxy isomer resembled that of JWH‐081; however, the relative ion intensities were clearly different from one another. The combination of EI scan and MS/MS allowed for the regioisomeric differentiation of the targeted compounds in this study. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
We report the observation of a new physical phenomenon of the addition of 2 hydrogen atoms to molecular ions thus forming [M + 2H]+ ions. We demonstrate such second hydrogen atom abstraction onto the molecular ions of pentaerythritol and trinitrotoluene (TNT). We used both gas chromatography mass spectrometry (GC‐MS) with supersonic molecular beam (SMB) with methanol added into its make‐up gas and electron ionization (EI) liquid chromatography mass spectrometry (LC‐MS) with SMB with methanol as the LC solvent. We found that the formation of methanol clusters resulted upon EI in the formation of dominant protonated pentaerythritol ion at m/z = 137 plus about 70% relative abundance of pentaerythritol molecular ion with 2 additional hydrogen atoms at m/z = 138 which is well above the 5.7% natural C13 isotope abundance of protonated pentaerythritol. Similarly, we found an abundant protonated TNT ion at m/z = 228 and a similar abundance of TNT molecular ion with 2 additional hydrogen atoms at m/z = 229. Upon the use of deuterated methanol (CD3OD) as the solvent, we observed an abundant m/z = 231 (M + 2D)+ of TNT with 2 deuterium atoms. We found such abundant second hydrogen atom abstraction with butylglycolate and at low abundances in dioctylphthalate, Vitamin K3, phenazine, and RDX. At this time, we are unable to report the magnitude and frequency of occurrence of this phenomenon in standard electrospray LC‐MS. This observation could have important implications on the provision of elemental formula from mass spectra that are involved with protonated molecules. Accordingly, while accurate mass measurements can serve for the generation of elemental formula, their further support and improvement via isotope abundance analysis are questionable. Consequently, if a given compound can be analyzed by both GC‐MS and LC‐MS, its GC‐MS analysis can be superior for the provision of accurate elemental formulae if its EI mass spectrum exhibits abundant molecular ions such as with GC‐MS with SMB (also known as cold EI).  相似文献   

6.
The EI mass spectra of seven 1,1′-(3-oxa-pentamethylene)-dicyclopentadienyl lanthanide and yttrium chlorides ( 1–7 ), and eleven dicyclopentadienyl lanthanide and yttrium chlorides ( 8–18 ) were investigated. Fragmentation patterns of these complexes were studied by using metastable ion measurements. The EI spectra of complexes 1–7 exhibited strong molecular ion peaks, the fragmentation of molecular ions were more complicated. The EI mass spectra of complexes 8–18 supported the dimeric structure under gaseous state. In the spectra of dimers (C5H5)3LN+ observed were resulted from the skeletal rearrangement involving the migration of cyclopentadienyl moiety.  相似文献   

7.
We have developed a combined EI/FI source for gas chromatography/orthogonal acceleration time‐of‐flight mass spectrometry (GC/oaTOFMS). In general, EI (electron ionization) and FI (field ionization) mass spectra are complementary: the EI mass spectrum contains information about fragment ions, while the FI mass spectrum contains information about molecular ions. Thus, the comparative study of EI and FI mass spectra is useful for GC/MS analyses. Unlike the conventional ion sources for FI and EI measurements, the newly developed source can be used for both measurements without breaking the ion source vacuum or changing the ion source. Therefore, the combined EI/FI source is more preferable than the conventional EI or FI ion source from the viewpoint of the reliability of measurements and facility of operation. Using the combined EI/FI source, the complementarity between EI and FI mass spectra is demonstrated experimentally with n‐hexadecane (100 pg): characteristic fragment ions for the n‐alkane such as m/z 43, 57, 71, and 85 are obtained in the EI mass spectrum, while only the parent peak of m/z 226 (M+) without any fragment ions is observed in the FI mass spectrum. Moreover, the field desorption (FD) measurement is also demonstrated with poly(ethylene glycol)s M600 (10 ng) and M1000 (15 ng). Signals of [M+H]+, [M+Na]+ and [M+K]+ are clearly detected in the FD mass spectra. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
The electron ionization (EI) mass spectra and electrospray ionization (ESI) mass spectra of a series of isomeric N‐chlorobenzyl‐ and N‐bromobenzyl‐substituted (E)‐2′(3′ or 4′)‐hydroxy‐4‐stilbazole chlorides and bromides (1–12) were recorded. The fragmentation pathways of all of the compounds and the characteristic fragment ions formed by EI‐MS were studied by means of B/E and B2/E constant linked‐scanning techniques. The formation of ions originating from preionization reactions, characteristic of quaternary halides under EI‐MS conditions, such as the elimination of chloro‐ or bromobenzyl halides, dehydrohalogenation or substitution reactions, is explained. As soft ionization methods cause no such degradation reactions, the ESI‐MS spectra of the studied compounds were also obtained for comparison. We thus demonstrated the applicability of EI‐MS even in cases when preionization takes place, as long as such secondary processes are properly accounted for. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The electron ionization (EI) mass spectra of a series of 3,3-difluoro-1-halo-2-arylcyclo- propenes (1, 2) give the fragments [M-X](+) (X: Br, Cl) as the base peaks. A comparison of tandem mass spectrometry (MS/MS) profiles of the m/z 151 ions recorded from compounds 1 and 2 and 3-bromo-3,3-difluoro-1-phenylcyclopropyne (5), 1,1,2,2-tetrafluoro-3-phenyl- cyclopropane (6), 1,1,2,2-tetrafluoroindane (7), and 2,3,3-trifluoroindene (8) suggested that the structure of the derived [M-X](+) fragment ion is more likely that of a substituted cyclopropenium ion. The results from calculations using the density functional theory (DFT) method support this MS/MS analysis.  相似文献   

10.
Electron ionization (EI) mass spectra of 46 compounds from several different compound classes were measured. Their molecular ion abundances were compared as obtained with 70‐eV EI, with low eV EI (such as 14 eV), and with EI mass spectra of vibrationally cold molecules in supersonic molecular beams (Cold EI). We further compared these mass spectra in their National Institute of Standards and Technology (NIST) library identification probabilities. We found that
  1. Low eV EI is not a soft ionization method, and it has little or no influence on the molecular ion relative abundances for large molecules and those with weak or no molecular ions.
  2. Low eV EI for compounds with abundant or dominant molecular ions in their 70 eV mass spectra results in the reduction of low mass fragment ions abundances thereby reducing their NIST library identification probabilities thus rarely justifies its use in real‐world applications.
  3. Cold EI significantly enhances the relative abundance of the molecular ions particularly for large compounds; yet, it retains the low mass fragment ions; hence, Cold EI mass spectra can be effectively identified by the NIST library.
  4. Different standard EI ion sources provide different 70 eV EI mass spectra. Among the Agilent technologies ion sources, the “Extractor” exhibits relatively abundant molecular ions compared with the “Inert” ion source, while the “High efficiency source” (HES) provides mass spectra with depleted molecular ions compared with the “Inert” ion source or NIST library mass spectra.
These conclusions are demonstrated and supported by experimental data in nine figures and two tables.  相似文献   

11.
Two series of bonding isomers of Ni(II) coordination compounds with tetradentate quasimacrocyclic ligands based on S-substituted isothiocarbohydrazides were characterized by electron impact (EI) mass spectrometry and by tandem mass spectrometry methods. Conventional EI mass spectra were more isomer specific than metastable ion (MI) and collision induced dissociation (CID) mass spectra of the molecular ions. The MI (and CID) mass spectra of the isomers were very similar. This effect resulted from a facile randomization of Ni–N bonds in the ions possessing low internal energies, prior to their dissociation. The compounds were found to be convenient precursors for coordinatively unsaturated metal-containing ions, [NiLn]+ and [RNiLn]+ (n = 1, 2; L = NCCH3, NCSCH3; R = OH, NO). Most of these species had a structure of mono- or disolvated nickel ion. The dissociation of [HONiNCCH3]+ ions was consistent with the formation of two isomers: one corresponding to the [HONi]+ ion solvated by acetonitrile and the other is a complex of H2O with [NiNCCH2]+. A structure of [HO,Ni,(NCCH3)2]+ ions was best represented by a five-membered cycle formed by two acetonitrile units and the metal atom with the OH group attached to one of the nitrogen atoms.  相似文献   

12.
Many metabolomic applications use gas chromatography/mass spectrometry (GC/MS) under standard 70 eV electron ionization (EI) parameters. However, the abundance of molecular ions is often extremely low, impeding the calculation of elemental compositions for the identification of unknown compounds. On changing the beam‐steering voltage of the ion source, the relative abundances of molecular ions at 70 eV EI were increased up to ten‐fold for alkanes, fatty acid methyl esters and trimethylsilylated metabolites, concomitant with 2‐fold absolute increases in ion intensities. We have compared the abundance, mass accuracy and isotope ratio accuracy of molecular species in EI with those in chemical ionization (CI) with methane as reagent gas under high‐mass tuning. Thirty‐three peaks of a diverse set of trimethylsilylated metabolites were analyzed in triplicate, resulting in 342 ion species ([M+H]+, [M–CH3]+ for CI and [M]+ . , [M–CH3]+ . for EI). On average, CI yielded 8‐fold more intense molecular species than EI. Using internal recalibration, average mass errors of 1.8 ± 1.6 mm/z units and isotope ratio errors of 2.3 ± 2.0% (A+1/A ratio) and 1.7 ± 1.8% (A+2/A ratio) were obtained. When constraining lists of calculated elemental compositions by chemical and heuristic rules using the Seven Golden Rules algorithm and PubChem queries, the correct formula was retrieved as top hit in 60% of the cases and within the top‐3 hits in 80% of the cases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Organophosphate esters (OPEs) are chemical compounds incorporated into materials as flame‐proof and/or plasticizing agents. In this work, 13 non‐halogenated and 5 halogenated OPEs were studied. Their mass spectra were interpreted and compared in terms of fragmentation patterns and dominant ions via various ionization techniques [electron ionization (EI) and chemical ionization (CI) under vacuum and corona discharge atmospheric pressure chemical ionization (APCI)] on gas chromatography coupled to mass spectrometry (GC‐MS). The novelty of this paper relies on the investigation of APCI technique for the analysis of OPEs via favored protonation mechanism, where the mass spectra were mostly dominated by the quasi‐molecular ion [M + H]+. The EI mass spectra were dominated by ions such as [H4PO4]+, [M–R]+, [M–Cl]+, and [M–Br]+, and for some non‐halogenated aryl OPEs, [M]+● was also observed. The CI mass spectra in positive mode were dominated by [M + H]+ and sometimes by [M–R]+, while in negative mode, [M–R] and more particularly [X] and [X2]‐● were mainly observed for the halogenated OPEs. Both EI and APCI techniques showed promising results for further development of instrumental method operating in selective reaction monitoring mode. Instrumental detection limits by using APCI mode were 2.5 to 25 times lower than using EI mode for the non‐brominated OPEs, while they were determined at 50‐100 times lower by the APCI mode than by the EI mode, for the two brominated OPEs. The method was applied to fish samples, and monitored transitions by using APCI mode showed higher specificity but lower stability compared with EI mode. The sensitivity in terms of signal‐to‐noise ratio varying from one compound to another. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Two unusual disinfection by-products have been detected periodically in the gas chromatography/mass spectrometry (GC/MS) characterization analyses of semi-volatile organics in treated drinking water. The electron ionization (EI) mass spectra contained mono-chlorinated and mono-brominated ions at m/z 107/109 and 151/153, respectively. Library searching techniques suggested mono-halogenated butanol structures but no matches could be found. Positive ion chemical ionization (CI) spectra contained mono-chlorinated and mono-brominated ions at m/z 105/107 and 149/151, respectively. No [M + H]+ ions were initially observed. Accurate mass measurements confirmed the empirical formulae for the significant ions in the EI spectra and the mono-halogenated butanol structures. Further CI experiments with other reagent gases and instruments revealed possible molecular weights of 139 and 183 Da, respectively. Tandem mass spectrometry (MS/MS) experiments in EI and CI were used to elucidate the fragmentation schemes. The two compounds have been tentatively identified as 1-aminoxy-1-chlorobutan-2-ol and 1-aminoxy-1-bromobutan-2-ol, respectively.  相似文献   

15.
Orthogonal acceleration time‐of‐flight (oa‐TOF) mass spectrometry (MS) was coupled to gas chromatography (GC) to measure ion yields (ratio of ion counts to number of neutrals entering the ion source) and signal‐to‐noise (S/N) in the electron ionization (EI) mode (hard ionization) as well as in the soft ionization modes of chemical ionization (CI), electron capture negative ion chemical ionization (NICI) and field ionization (FI). Mass accuracies of the EI and FI modes were also investigated. Sixteen structurally diverse volatile organic compounds were chosen for this study. The oa‐TOF mass analyzer is highly suited for FI MS and provided an opportunity to compare the sensitivity of this ionization method to the more conventional ionization methods. Compared to the widely used quadrupole mass filter, the oa‐TOF platform offers significantly greater mass accuracy and therefore the possibility of determining the empirical formula of analytes. The findings of this study showed that, for the instrument used, EI generated the most ions with the exception of compounds able to form negative ions readily. Lower ion yields in the FI mode were generally observed but the chromatograms displayed greater S/N and in many cases gave spectra dominated by a molecular ion. Ion counts in CI are limited by the very small apertures required to maintain sufficiently high pressures in the ionization chamber. Mass accuracy for molecular and fragment ions was attainable at close to manufacturer's specifications, thus providing useful information on molecular ions and neutral losses. The data presented also suggests a potentially useful instrumental combination would result if EI and FI spectra could be collected simultaneously or in alternate scans during GC/MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This paper reports the mass spectra, obtained after electron ionisation (EI) at 70 eV, of 34 trichothecenes and five culmorin compounds after acylation with pentafluoropropionic anhydride. The derivatised fungal metabolites were separated by gas chromatography, and the mass spectra were obtained by scanning of a single quadrupole mass filter in the scan range m/z 200‐900. The fragmentation pathways of three trichothecenes (triacetyl‐deoxynivalenol, 4,15‐diacetoxy‐scirpenol, T‐2 toxin) have been studied in more detail by linked scan – high‐resolution mass spectrometry. The most common trichothecenes are today more often routinely analysed using LC/MS‐based methodologies. However, EI‐MS may give complementary structural information, and the data that are summarised in this article may help to identify analogues of one of the largest class of mycotoxins, the tricothecenes, as well as culmorin compounds that are commonly co‐produced by Fusarium culmorum and F. graminearum in cultures or naturally contaminated samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Molecular weights of macrolide antibiotics can be determined from either (M + H)+ or (M + Met)+, the latter desorbed from alkali metal salt-saturated matrices. The ion chemistry of macrolides, as determined by tandem mass spectrometry (MS/MS), is different for ions produced as metallated than those formed as (M + H)+ species. An explanation for these differences is the location of the charge. For protonated species, the charge is most likely situated on a functional group with high proton affinity, such as the dimethylamino group of the ammo sugar. The alkali metal ion, however, is bonded to the highly oxygenated aglycone. As a result, the collision-activated dissociation spectra of protonated macrolides are simple with readily identifiable fragment ions in both the high and low mass regions but no fragments in the middle mass range. In contrast, the cationized species give complex spectra with many abundant ions, most of which are located in the high mass range. The complementary nature of the fragmentation of these two species recommends the study of both by MS/MS when determining the structure or confirming the identity of these biomaterials.  相似文献   

18.
19.
Mono‐, di‐ and trialkyl derivatives of 'sulfabenzamide' (N‐4‐aminophenylsulfonylbenzamide) have been prepared and their electron ionization (EI) mass spectra examined. It is found that the fragmentation of N‐alkylsulfabenzamides (alkyl = CH3 to n‐C5H11) proceeds via a very specific rearrangement process. The proposed mechanism involves an intermediate formation of distonic molecular ions, and the driving force for this process is the formation of stable N‐alkylphenylcyanide cations [R‐N+ ? CC6H5]. The findings are confirmed by exact mass measurements, tandem mass spectrometry (MS/MS) experiments and deuterium labeling. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

20.
The mass spectra of organogermanium compounds of the type PhnGeCl4-n (where n = 1–4) were investigated. Positive and negative ion spectra of these compounds were recorded using conventional electron impact (EI) conditions. In common with the analogous tetra-alkyltin compound, Ph4Ge produced no negative ion spectra under these conditions. Tandem mass spectrometry (MS–MS) was used to deduce fragmetation reaction pathways for these compounds. In the case of PhGeCl3, collision-induced dissociation studies were extended to examine the ion–molecule reactions under relatively high reactant pressures of methanol and/or water vapour in the collision cell of the MS–MS instrument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号