首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chromophore effect in the photodissociation of protonated peptides at 266 nm was investigated using synthetic peptides with the sequence RGGXGGGGGR where X was a phenylalanyl(F), tyrosyl(Y), cysteinyl(C), glycyl(G), seryl(S), or histidyl(H) residue. The peptides with an F or Y residue dissociated efficiently. Fragment ions due to cleavages at either end of the chromophore were especially prominent just as for the peptide with a tryptophanyl residue reported previously.1Photodissociation was observed even for the peptides without any noticeable chromophore at 266 nm. Here, dissociation at all the peptide bonds was almost equally prominent. Photodissociation of the protonated angiotensin I was investigated using the spectral correlation rules observed in the model systems. Role of the chromophores and the plausible mechanisms involved are discussed.  相似文献   

2.
[M + Cu]+ peptide ions formed by matrix-assisted laser desorption/ionization from direct desorption off a copper sample stage have sufficient internal energy to undergo metastable ion dissociation in a time-of-flight mass spectrometer. On the basis of fragmentation chemistry of peptides containing an N-terminal arginine, we propose the primary Cu+ ion binding site is the N-terminal arginine with Cu+ binding to the guanidine group of arginine and the N-terminal amine. The principal decay products of [M + Cu]+ peptide ions containing an N-terminal arginine are [a(n) + Cu - H]+ and [b(n) + Cu - H]+ fragments. We show evidence to suggest that [a(n) + Cu - H]+ fragment ions are formed by elimination of CO from [b(n) + Cu - H]+ ions and by direct backbone cleavage. We conclude that Cu+ ionizes the peptide by attaching to the N-terminal arginine residue; however, fragmentation occurs remote from the Cu+ ion attachment site involving metal ion promoted deprotonation to generate a new site of protonation. That is, the fragmentation reactions of [M + Cu]+ ions can be described in terms of a "mobile proton" model. Furthermore, proline residues that are adjacent to the N-terminal arginine do not inhibit formation of [b(n) + Cu - H]+ ion, whereas proline residues that are distant to the charge carrying arginine inhibit formation of [b(n) + Cu - H]+ ions. An unusual fragment ion, [c(n) + Cu + H]+, is also observed for peptides containing lysine, glutamine, or asparagine in close proximity to the Cu+ carrying N-terminal arginine. Mechanisms for formation of this fragment ion are also proposed.  相似文献   

3.
In an analysis of a combined chymotrypsin/AspN digest of galectin-3 by positive ion nano-electrospray ionisation mass spectrometry (nanoESI-MS) several peptides were observed which showed metal adduct ions as their most abundant ion signals. The most prominent adduct ions were observed at m/z values corresponding to [M+40]2+, [M+41]3+, and [M+42]4+ ions. Detailed investigation of the [M+40]2+ ion of the peptide GAPAGPLIVPY showed that it was not, as originally expected, a [M+H+39K]2+ adduct ion but had the composition [M+40Ca]2+. This was verified by several approaches: (i) nanoESI-MS/MS of the [M+Ca]2+ adduct ions resulted in the virtually exclusive formation of doubly charged fragment ions; (ii) mass determination by quadrupole time-of-flight (QTOF)-MS provided a preliminary identification; and (iii) accurate mass measurement using nanoESI Fourier transform ion cyclotron resonance (FTICR)-MS at a mass resolving power of 500 000 allowed the specific detection and identification of the isobaric ion pairs [M+40Ca]2+/[M+H+39K]2+ and [M+24Mg]2+/[M+H+23Na]2+. All peptides in the chymotryptic galectin-3 digest without a basic residue (K or R) showed addition of calcium as the most prominent ionisation principle. A further common feature of these nonbasic peptides was the presence of several proline residues, which is assumed to be a factor promoting the intense addition of calcium. It was observed that the common trace levels of sodium and calcium in analytical grade solvents (about 1-10 microM) are sufficient to generate the [M+H+23Na]2+ and [M+40Ca]2+ ions as the most prominent species of the peptide GAPAGPLIVPY. We conclude that the sequence motifs P-XX-P and P-XXX-P favour the solvation of alkaline earth ions in ESI-MS. In view of the successful detection of physiological Ca/protein interactions by ESI-MS, this finding may point to a solvation of Ca2+ by galectin in solution. The findings open new routes of research in the study of metal/protein and metal/peptide interactions  相似文献   

4.
Transition metal-polyalanine complexes were analyzed in a high-capacity quadrupole ion trap after electrospray ionization. Polyalanines have no polar amino acid side chains to coordinate metal ions, thus allowing the effects metal ion interaction with the peptide backbone to be explored. Positive mode mass spectra produced from peptides mixed with salts of the first row transition metals Cr(III), Fe(II), Fe(III), Co(II), Ni(II), Cu(I), and Cu(II) yield singly and doubly charged metallated ions. These precursor ions undergo collision-induced dissociation (CID) to give almost exclusively metallated N-terminal product ions whose types and relative abundances depend on the identity of the transition metal. For example, Cr(III)-cationized peptides yield CID spectra that are complex and have several neutral losses, whereas Fe(III)-cationized peptides dissociate to give intense non-metallated products. The addition of Cu(II) shows the most promise for sequencing. Spectra obtained from the CID of singly and doubly charged Cu-heptaalanine ions, [M + Cu - H](+) and [M + Cu](2+) , are complimentary and together provide cleavage at every residue and no neutral losses. (This contrasts with [M + H](+) of heptaalanine, where CID does not provide backbone ions to sequence the first three residues.) Transition metal cationization produces abundant metallated a-ions by CID, unlike protonated peptides that produce primarily b- and y-ions. The prominence of metallated a-ions is interesting because they do not always form from b-ions. Tandem mass spectrometry on metallated (Met = metal) a- and b-ions indicate that [b(n) + Met - H](2+) lose CO to form [a(n) + Met - H](2+), mimicking protonated structures. In contrast, [a(n) + Met - H](2+) eliminate an amino acid residue to form [a(n-1) + Met - H](2+), which may be useful in sequencing.  相似文献   

5.
The dissociation reactions of [M + H]+, [M + Na]+, and [M + Cu]+ ions of bradykinin (amino acid sequence RPPGFSPFR) and three bradykinin analogues (RPPGF, RPPGFSPF, PPGFSPFR) are examined by using 193-nm photodissociation and post-source decay (PSD) TOF-TOF-MS techniques. The photodissociation apparatus is equipped with a biased activation cell, which allows us to detect fragment ions that are formed by dissociation of short-lived (<1 mus) photo-excited ions. In our previously reported photodissociation studies, the fragment ions were formed from ions dissociating with lifetimes that exceeded 10 mus; thus these earlier photofragment ion spectra and post-source decay (PSD) spectra [composite of both metastable ion (MI) and collision-induced dissociation (CID)] were quite similar. On the other hand, short-lived photo-excited ions dissociate by simple bond cleavage reactions and other high-energy dissociation channels. We also show that product ion types and abundances vary with the location of the charge on the peptide ion. For example, H+ and Na+ cations can bind to multiple polar functional groups (basic amino acid side chains) of the peptide, whereas Cu+ ions preferentially bind to the guanidino group of the arginine side-chain and the N-terminal amine group. Furthermore, when Cu+ is the charge carrier, the abundances of non-sequence informative ions, especially loss of small neutral molecules (H2O and NH3) is decreased for both photofragment ion and PSD spectra relative to that observed for [M + H]+ and [M + Na]+ peptide ions.  相似文献   

6.
Tryptophan-containing N-acetylated peptides AcTrp-Gly, AcTrp-Ala, AcTrp-Val, and AcTrp-ValOMe bind to platinum(II) and undergo selective hydrolytic cleavage of the C-terminal amide bond; the N-terminal amide bond remains intact. In acetone solution, bidentate coordination of the tryptophanyl residue via the C(3) atom of indole and the amide oxygen atom produces complexes of spiro stereochemistry, which are characterized by (1)H, (13)C, and (195)Pt NMR spectroscopy, and also by UV-vis, IR, and mass spectroscopy. Upon addition of 1 molar equiv of water, these complexes undergo hydrolytic cleavage. This reaction is as much as 10(4)-10(5) times faster in the presence of platinum(II) complexes than in their absence. The hydrolysis is conveniently monitored by (1)H NMR spectroscopy. We report the kinetics and mechanism for this reaction between cis-[Pt(en)(sol)(2)](2+), in which the solvent ligand is water or acetone, and AcTrp-Ala. The platinum(II) ion as a Lewis acid activates the oxygen-bound amide group toward nucleophilic attack of solvent water. The reaction is unimolecular with respect to the metal-peptide complex. Because the tryptophanyl fragment AcTrp remains coordinated to platinum(II) after cleavage of the amide bond, the cleavage is not catalytic. Added ligand, such as DMSO and pyridine, displaces AcTrp from the platinum(II) complex and regenerates the promoter. This is the first report of cleavage of peptide bonds next to tryptophanyl residues by metal complexes and one of the very few reports of organometallic complexes involving metal ions and peptide ligands. Because these complexes form in nonaqueous solvents, a prospect for cleavage of membrane-bound and other hydrophobic proteins with new regioselectivity has emerged.  相似文献   

7.
The influence of the presence and position of a single beta-alanine, gamma-aminobutyric acid, epsilon-aminocaproic acid or 4-aminomethylbenzoic acid residue on the tendency to form b(n)+ -and y(n)+ -type product ions was determined using a group of protonated tetrapeptides with general sequence XAAG, AXAG and AAXG (where X refers to the position of amino acid substitution). The hypothesis tested was that the 'alternative' amino acids would influence product ion signal intensities by inhibiting or suppressing either the nucleophilic attack or key proton transfer steps by forcing the adoption of large cyclic intermediates or blocking cyclization altogether. We found that specific b ions are diminished or eliminated completely when betaA, gammaAbu, Cap or 4AMBz residues are positioned such that they should interfere with the intramolecular nucleophilic attack step. In addition, differences in the relative proton affinities of the alternative amino acids influence the competition between complementary b(n) and y(n) ions. For both the AXAG and the XAAG series of peptides, collision-induced dissociation (CID) generated prominent b ions despite potential inhibition or suppression of intramolecular proton migration by the betaA, gammaAbu, Cap or 4AMBz residues. The prominent appearance of b ions from the AXAG and XAAG peptide is noteworthy, and suggests either that proton migration occurs through larger, 'whole' peptide cyclic intermediates or that fragmentation proceeds through a population of [M+H]+ isomers that are initially protonated at amide O atoms.  相似文献   

8.
Molecular radical cations have proven to be difficult to generate from aliphatic peptides under electrospray ionization mass spectrometry (ESI-MS) conditions. For a family of small aliphatic peptides GGX, where X = G, A, P, I, L and V, these cations have been generated by electrospraying a mixture of Cu.2+, 12-crown-4 and GGX in methanol/water. GGX.+ is readily formed from the collision-induced dissociation (CID) of [CuII(12-crown-4)(GGX)].2+. The formation of these aliphatic peptide radical ions from these complexes, in cases where it is not possible from the corresponding complexes involving a series of amine ligands instead of 12-crown-4, is likely due to the second ionization energy of the [CuI(12-crown-4)(GGX)]+ complex being higher than that of the corresponding [CuI(amine)(GGX)]+ complex. Using these 12-crown-4 complexes, GGI can be differentiated from the isomeric GGL by comparing the CID spectra of their [a3 + H].+ ions.  相似文献   

9.
The gas-phase ion-molecule reactions of neutral alanylglycine have been examined with various mass-selected acylium ions RCO(+) (R= CH(3), CD(3), C(6)H(5), C(6)F(5) and (CH(3))( 2)N), as well as the transacylation reagent O-benzoylbenzophenone in a Fourier transform ion cyclotron resonance mass spectrometer. Reactions of the gaseous dipeptide with acylium ions trapped in the ICR cell result in the formation of energized [M + RCO](+) adduct ions that fragment to yield N-terminal b-type and C-terminal y-type product ions, including a modified b(1) ion which is typically not observed in the fragmentation of protonated peptides. Judicious choice of the acylium ion employed allows some control over the product ion types that are observed (i.e., b versus y ions). The product ion distributions from these ion--molecule reactions are similar to those obtained by collision-activated dissociation in a triple quadrupole mass spectrometer of the authentic N-acylated alanylglycine derivatives. These data indicate that derivatization of the peptide in the gas-phase occurs at the N-terminal amine. Ab initio molecular orbital calculations, performed to estimate the thermochemistry of the steps associated with adduct formation as well as product ion formation, indicate that (i) the initially formed adduct is energized and hence likely to rapidly undergo fragmentation, and (ii) the likelihood for the formation of modified b(1) ions in preference to y(1) ions is dependent on the R substituent of the acylium ion. The reaction of the tetrapeptide valine--alanine--alanine--phenylalanine with the benzoyl cation was also found to yield a number of product ions, including a modified b(1) ion. This result suggests that the new experimental approach described here may provide a tool to address one of the major limitations associated with traditional mass spectrometric peptide sequencing approaches, that is, determination of the identity and order of the two N-terminal amino acids. Analogies are made between the reactions observed here and the derivatization and N-terminal cleavage reactions employed in the condensed-phase Edman degradation method.  相似文献   

10.
Eleven doubly protonated peptides with a residue homologous to lysine were investigated by electron capture dissociation mass spectrometry (ECD-MS). Lysine homologues provide the unique opportunity to examine the ECD fragmentation behavior by allowing us to vary the length of the lysine side chain, with minimal structural change. The lysine homologue has a primary amine side chain with a length that successively decreases by one methylene (CH(2)) unit from the --CH(2)CH(2)CH(2)CH(2)NH(2) of lysine and the accompanying decrease of its proton affinities: lysine (K), 1006.5(+/-7.2) kJ/mol; ornithine (K(*)), 1001.1(+/-6.6) kJ/mol; 2,4-diaminobutanoic acid (K(**)), 975.8(+/-7.4) kJ/mol; 2,3-diaminopropanoic acid (K(***)), 950.2(+/-7.2) kJ/mol. In general, the lysine-homologous peptides exhibited overall ECD fragmentation patterns similar to that of the lysine-containing peptides in terms of the locations, abundances, and ion types of products, such as yielding c(+) and z(+.) ions as the dominant product ions. However, a close inspection of product ion mass spectra showed that ECD-MS for the alanine-rich peptides with an ornithinyl or 2,4-diaminobutanoyl residue gave rise to b ions, while the lysinyl-residue-containing peptides did not, in most cases, produce any b ions. The peptide selectivity in the generation of b(+) ions could be understood from within the framework of the mobile proton model in ECD-MS, previously proposed by Cooper (Ref. 29). The exact mass analysis of the resultant b ions reveals that these b ions are not radical species but rather the cationic species with R-CO(+) structure (or protonated oxozalone ion), that is, b(+) ions. The absence of [M+2H](+.) species in the ECD mass spectra and the selective b(+)-ion formation are evidence that the peptides underwent H-atom loss upon electron capture, and then the resulting reduced species dissociated following typical MS/MS fragmentation pathways. This explanation was further supported by extensive b(+) ions generated in the ECD of alanine-based peptides with extended conformations.  相似文献   

11.
The protonated [M + H]+ ions of glycine, simple glycine containing peptides, and other simple di- and tripeptides react with acetone in the gas phase to yield [M + H + (CH3)2CO]+ adduct ion, some of which fragment via water loss to give [M + H + (CH3)2CO - H2O]+ Schiff's base adducts. Formation of the [M + H + (CH3)2CO]+ adduct ions is dependent on the difference in proton affinities between the peptide M and acetone, while formation of the [M + H + (CH3)2CO - H2O]+ Schiff's base adducts is dependent on the ability of the peptide to act as an intramolecular proton "shuttle." The structure and mechanisms for the formation of these Schiff's base adducts have been examined via the use of collision-induced dissociation tandem mass spectrometry (CID MS/MS), isotopic labeling [using (CD3)2CO] and by comparison with the reactions of Schiff's base adducts formed in solution. CID MS/MS of these adducts yield primarily N-terminally directed a- and b-type "sequence" ions. Potential structures of the b1 ion, not usually observed in the product ion spectra of protonated peptide ions, were examined using ab initio calculations. A cyclic 5 membered pyrrolinone, formed by a neighboring group participation reaction from an enamine precursor, was predicted to be the primary product.  相似文献   

12.

A novel fragmentation of metastable peptide [M + H]+ ions is described. Loss of the C-terminal amino acid residue is accomqanied by retention of one of the carboxyl oxygens, as judged by 18O-labeling. The retained 8O label is located at the new C-terminus. Sequential mass spectrometric analyses indicate that the structure of the first-generation product ion is indistinguishable from that of the [M + H]+ ion of the peptide with one fewer amino acid residues. Thus, for example, the metastable decompositions of ions of m/z 904 are similar whether they correspond to des-Arg9-bradykinin [M + H]+ ions or to fragments derived from bradykinin [M + H]+ ions. No corresponding rearrangements have been observed for peptides with C-terminal amide or ester functions. The mechanism of this fragmentation may be considered to be analogous to that previously suggested for fragmentations of [M + alkali metal cation]+ ions. For the examples of bradykinin and related peptides, the rearrangement is strongly promoted when arginine is the amino acid residue lost. The same fragmentation is also favored by the presence of an arginine residue at or near the N-terminus. The strong influence of peptide amino acid composition, including residues remote from the C-terminus, on the prevalence of this fragmentation suggests mechanistic complexities that require further elucidation.

  相似文献   

13.
The [M - H]- ions of a variety of di- to pentapeptides containing H or alkyl side chains have been prepared by electrospray ionization and low-energy collision-induced dissociation (CID) of the deprotonated species carried out in the interface region between the atmospheric pressure source and the quadrupole mass analyzer. Using the nomenclature applied to the fragmentation of protonated peptides, deprotonated dipeptides fragment to give a2 ions (CO2 loss) and y1 ions, where the y1 ion has two fewer hydrogens than the y"1 ions formed from protonated peptides. Deprotonated tri- and tetrapeptides fragment to give primarily y1, c1, and "b2 ions, where the "b2 ion has two fewer hydrogens than the b2 ion observed for protonated peptides. More minor yields of y2, c2, and a2 ions also are observed. The a ion formed by loss of CO2 from the [M - H]- ion shows loss of the N-terminal residue for tripeptides and sequential loss of two amino acid residues from the N-terminus for tetrapeptides. The formation of c(n) ions and the sequential loss of N-terminus residues from the [M - H - CO2]- ion serves to sequence the peptide from the N-terminus, whereas the formation of y(n) ions serves to sequence the peptide from the C-terminus. It is concluded that low-energy CID of deprotonated peptides provides as much (or more) sequence information as does CID of protonated peptides, at least for those peptides containing H or alkyl side chains. Mechanistic aspects of the fragmentation reactions observed are discussed.  相似文献   

14.
Photodissociation at 266 nm of protonated synthetic polypeptides containing a tryptophanyl residue was investigated using a homebuilt tandem time-of-flight mass spectrometer equipped with a matrix-assisted laser desorption/ionization source. Efficient photodissociation of the protonated peptides was demonstrated. Most of the intense peaks in the laser-induced tandem mass spectra were sequence ions. Furthermore, sequence ions due to cleavages at all the peptide bonds were observed; this is a feature of the technique that is particularly useful for peptide sequencing. Fragmentations at both ends of the tryptophanyl residue were especially prevalent, which can be useful for location of the tryptophanyl chromophore in a peptide.  相似文献   

15.
Dissociation pathways of alkali-cationized peptides have been studied using multiple stages of mass spectrometry (MSx) with a quadrupole ion trap mass spectrometer. Over 100 peptide ions ranging from 2 to 10 residues in length and containing each of the 20 common amino acids have been examined. The formation of the [b(n-1) + Na + OH]+ product ion is the predominant dissociation pathway for the majority of the common amino acids. This product corresponds to a sodium-cationized peptide one residue shorter in length than the original peptide. In a few cases, product ions such as [b(n-1) + Na - H]+ and those formed by loss, or partial loss, of a sidechain are observed. Both [b(n-1) + Na + OH]+ and [b(n-1) + Na - H]+ product ions can be selected as parent ions for a subsequent stage of tandem mass spectrometry (MS/MS). It is shown that these dissociation patterns provide opportunities for peptide sequencing by successive dissociation from the C-terminus of alkali-cationized peptides. Up to seven stages of MS/MS have been performed on a series of [b + Na + OH]+ ions to provide sequence information from the C-terminus. This method is analogous to Edman degradation except that the cleavage occurs from the C-terminus instead of the N-terminus, making it more attractive for N-terminal blocked peptides. The isomers leucine and isoleucine cannot be differentiated by this method but the isobars lysine and glutamine can.  相似文献   

16.
The use of chemical warfare agents has become an issue of emerging concern. One of the challenges in analytical monitoring of the extremely toxic ‘V’‐type chemical weapons [O‐alkyl S‐(2‐dialkylamino)ethyl alkylphosphonothiolates] is to distinguish and identify compounds of similar structure. MS analysis of these compounds reveals mostly fragment/product ions representing the amine‐containing residue. Hence, isomers or derivatives with the same amine residue exhibit similar mass spectral patterns in both classical EI/MS and electrospray ionization‐MS, leading to unavoidable ambiguity in the identification of the phosphonate moiety. A set of five ‘V’‐type agents, including O‐ethyl S‐(2‐diisopropylamino)ethyl methylphosphonothiolate (VX), O‐isobutyl S‐(2‐diethylamino)ethyl methylphosphonothiolate (RVX) and O‐ethyl S‐(2‐diethylamino)ethyl methylphosphonothiolate (VM) were studied by liquid chromatography/electrospray ionization/MS, utilizing a QTRAP mass detector. MS/MS enhanced product ion scans and multistage MS3 experiments were carried out. Based on the results, possible fragmentation pathways were proposed, and a method for the differentiation and identification of structural isomers and derivatives of ‘V’‐type chemical warfare agents was obtained. MS/MS enhanced product ion scans at various collision energies provided information‐rich spectra, although many of the product ions obtained were at low abundance. Employing MS3 experiments enhanced the selectivity for those low abundance product ions and provided spectra indicative of the different phosphonate groups. Study of the fragmentation pathways, revealing some less expected structures, was carried out and allowed the formulation of mechanistic rules and the determination of sets of ions typical of specific groups, for example, methylphosphonothiolates versus ethylphosphonothiolates. The new group‐specific ions elucidated in this work are also useful for screening unknown ‘V’‐type agents and related compounds, utilizing precursor ion scan experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The presence of disulfide linkages in multiply charged polypeptide ions tends to inhibit the formation of structurally informative product ions under conventional quadrupole ion trap collisional activation conditions. In particular, fragmentation that requires two cleavages (i.e., cleavage of a disulfide linkage and a peptide linkage) is strongly suppressed. Reduction of the disulfide linkage(s) by use of dithiothreitol yields parent ions upon electrospray without this complication. Far richer structural information is revealed by ion trap collisional activation of the disulfide-reduced species than from the native species. These observations are illustrated with doubly protonated native and reduced somatosin, the [M + 5H](5+) ion of native bovine insulin and the [M + 4H](4+) and [M + 3H](3+) ions of the B-chain of bovine insulin produced by reduction of the disulfide linkages in insulin, and the [M + 11H](11+) ion of native chicken lysozyme and the [M + 11H](11+) and [M + 14H](14+) ions of reduced lysozyme. In each case, the product ions produced by ion trap collisional activation were subjected to ion/ion proton transfer reactions to facilitate interpretation of the product ion spectra. These studies clearly suggest that the identification of polypeptides with one or more disulfide linkages via application of ion trap collisional activation to the multiply charged parent ions formed directly by electrospray could be problematic. Means for cleaving the disulfide linkage, such as reduction by dithiothreitol prior to electrospray, are therefore desirable in these cases.  相似文献   

18.
The collision-induced dissociations of the even-electron [M + H](+) and/or [M - H](-) ions of 121 model compounds (mainly small aromatic compounds with one to three functional groups) ionized by electrospray ionization (ESI) or atmospheric pressure chemical ionization (APCI) have been studied using an ion trap instrument, and the results are compared with the literature data. While some functional groups (such as COOH, COOCH(3), SO(3)H in the negative ion mode, or NO(2) in both the positive and negative ion modes) generally promote the loss of neutrals that are characteristic as well as specific, other functional groups (such as COOH in the positive ion mode) give rise to the loss of neutrals that are characteristic, but not specific. Finally, functional groups such as OH and NH(2) in aromatic compounds do not lead to the loss of a neutral that reflects the presence of these substituents. In general, the dissociation of [M + H](+) and [M - H](-) ions generated from aliphatic compounds or compounds containing an aliphatic moiety obeys the even-electron rule (loss of a molecule), but deviations from this rule (loss of a radical) are sometimes observed for aromatic compounds, in particular for nitroaromatic compounds. Thermochemical data and ab initio calculations at the CBS-QB3 level of theory provide an explanation for these exceptions. When comparing the dissociation behaviour of the even-electron [M + H](+) and/or [M - H](-) ions (generated by ESI or APCI) with that of the corresponding odd-electron [M](+) ions (generated by electron ionization, EI), three cases may be distinguished: (1) the dissociation of the two ionic species differs completely; (2) the dissociation involves the loss of a common neutral, yielding product ions differing in mass by one Da, or (3) the dissociations lead to a common product ion.  相似文献   

19.
Positive ion tandem quadrupole mass spectrometric methods for structural characterization of the subclasses of sn-glycero-3-phosphocholine (PC), including alkylacyl- and alk-1-enylacylphosphocholine and lysophosphatidylcholine (LPC), are described. Following collisionally activated dissociation, the [M + Li](+) ions generated by electrospray ionization yield abundant informative fragment ions that permit structural determination, and distinction of regioisomers among lysophosphatidylcholine can be easily achieved. In contrast, structurally informative ions arising from [M + H](+) or [M + Na](+) ions are less prominent. The most abundant ion observed in the product-ion spectra of the [M + Li](+) ions of plasmenyl- and plasmanyl-PC and of LPC arises from loss of N(CH(3))(3) ([M + Li - 59](+)). This feature permits their distinction from a product-ion spectrum arising from a diacylphosphatidylcholine, in which the [M + Li - 183](+) ion reflecting loss of phosphocholine is the most prominent. Examples for identification of various subclasses of PC in biological extracts by tandem mass spectrometry applying various constant neutral loss scannings are also shown.  相似文献   

20.
The collision-induced dissociation spectra of a series of synthetic, tryptic peptides that differed by the position of an internal histidine residue were studied. Electrospray ionization of these peptides produced both doubly and triply protonated molecular ions. Collision-induced fragmentation of the triply protonated peptide ions had better efficiency than that of the doubly protonated ions, producing a higher abundance of product ions at lower collision energies. The product ion spectra of these triply protonated ions were dominated by a series of doubly charged y-ions and the amount of sequence information was dependent on the position of the histidine residue. In the peptides where the histidine was located towards the C-terminus of the peptide, a more extensive series of sequence specific product ions was observed. As the position of the histidine residue was moved towards the N-terminus of the peptide, systematically less sequence information was observed. The peptides were subsequently modified with diethylpyrocarbonate to manipulate the product ion spectra. Addition of the ethoxyformyl group to the N-terminus and histidine residue shifted the predominant charge state of the modified peptide to the doubly protonated form. These peptide ions fragmented efficiently, producing product ion spectra that contained more sequence information than could be obtained from the corresponding unmodified peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号