共查询到20条相似文献,搜索用时 0 毫秒
1.
Sri Juari Santosa S. Tanaka Kazuo Yamanaka 《Fresenius' Journal of Analytical Chemistry》1997,357(8):1122-1127
A sensitive method has been developed for the sequential determination of V, Mn, Fe, Co, Ni, Cu, Zn, Mo and Sb in sea water
using inductively coupled plasma mass spectrometry (ICP-MS) after electrothermal vaporization of their dithiocarbamate complexes
in methyl isobutyl ketone (MIBK). After complexion with sodium diethyldithiocarbamate (NaDDTC), all trace analyte elements
were simultaneously separated from sea water matrix and concentrated 20 fold in a single extract of MIBK, followed by introduction
of 10 μL of the extract into argon plasma using a pyrolytic graphite rod electrothermal vaporizer (ETV). Sensitivity enhancement
due to chemical modification using a mixed modifier of Pd(NO3)2-Mg(NO3)2 was observed for all the elements. The limits of detection ranged from 2 ng/L for Co to 329 ng/L for V. For replicate determinations
of the elements in sea water, the repeatability was within 10% (as a coefficient variation), except for V (12.8%). The recovery
test performed on a sea water sample resulted in a range value from 87% for Sb to 119% for V. The method has been successfully
applied to sea water samples collected from the surface to the depth of 5000 m at a sampling station in the northwest Pacific
Ocean.
Received: 1 July 1996/Revised: 24 September 1996/Accepted: 25 September 1996 相似文献
2.
A modified graphite furnace for solid-sampling atomic absorption spectrometry as an electrothermal vaporizer (ETV) was coupled to a Perkin-Elmer/Sciex ELAN 6000 ICP mass spectrometer. The integrals obtained from electrothermal vaporization of aliquots containing As, Cd, Cu, Co, Fe, Mn, Pb, Se, and Zn were compared with those obtained from pneumatic nebulization of the same aqueous standard solution. The pneumatic nebulizer was calibrated by weighing the mass of aqueous aerosol trapped on a filter. With "wet plasma" conditions maintained also for measurements with the ETV and reference signals for analyte signals obtained with the calibrated pneumatic nebulization, the transport efficiency of the ETV system, e.g. the ratio of the analyte amount introduced into the plasma to that amount dosed into the vaporizer, was determined. The transport efficiency of two different tube and interface designs has been evaluated. Investigations with and without the use of trifluoromethane as reactive gas, with different furnace heating rates, and with varying gas flows were performed. In general, the tube equipped with a nozzle led to generally higher transport efficiency than the standard tube. Without trifluoromethane transport efficiencies ranged from 10% to 35% with the standard tube and from 15% to 50% with the nozzle-type tube. With addition of 2 mL min(-1) trifluoromethane to the argon flow of 400 mL min(-1) through the tube, transport efficiencies from 20% to 70% and from 70% to 100% were achieved with the standard and nozzle-type tubes, respectively. 相似文献
3.
Klaus-Christian Friese U. Wätjen Karl-Heinz Grobecker 《Analytical and bioanalytical chemistry》2001,370(7):843-849
A modified graphite furnace for solid-sampling atomic absorption spectrometry as an electrothermal vaporizer (ETV) was coupled to a Perkin–Elmer/Sciex ELAN 6000 ICP mass spectrometer. The integrals obtained from electrothermal vaporization of aliquots containing As, Cd, Cu, Co, Fe, Mn, Pb, Se, and Zn were compared with those obtained from pneumatic nebulization of the same aqueous standard solution. The pneumatic nebulizer was calibrated by weighing the mass of aqueous aerosol trapped on a filter. With “wet plasma” conditions maintained also for measurements with the ETV and reference signals for analyte signals obtained with the calibrated pneumatic nebulization, the transport efficiency of the ETV system, e.g. the ratio of the analyte amount introduced into the plasma to that amount dosed into the vaporizer, was determined. The transport efficiency of two different tube and interface designs has been evaluated. Investigations with and without the use of trifluoromethane as reactive gas, with different furnace heating rates, and with varying gas flows were performed. In general, the tube equipped with a nozzle led to generally higher transport efficiency than the standard tube. Without trifluoromethane transport efficiencies ranged from 10% to 35% with the standard tube and from 15% to 50% with the nozzle-type tube. With addition of 2 mL min–1 trifluoromethane to the argon flow of 400 mL min–1 through the tube, transport efficiencies from 20% to 70% and from 70% to100% were achieved with the standard and nozzle-type tubes, respectively. 相似文献
4.
The operational parameters of the graphite furnace for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS), i.e. the internal carrier gas flow rate, the total carrier gas flow rate, the sample pretreatment temperature and the volatilization temperature, are optimized for oligoelement determinations (75As, 9Be, 112Cd, 50Cr, 65Cu, 103Rh, 123Sb). The volatilization temperatures of As and Cr are compared to those obtained by graphite furnace atomic absorption spectrometry (GFAAS). Several modifiers Mg(NO3)2, Pd(NO3)2, Mg(NO3)2/Pd(NO3)2, Ni(NO3)2, KI, (NH4)H2PO4 have been tested using the concentrations recommended for GFAAS. The concentration of Mg(NO3)2 alone and in combination with NaCl has been varied to find the optimal modifier conditions. ETV-ICP-MS signal enhancements by a factor of 10 to 130 respective to those of conventional nebulization have been obtained. The optimized parameters are evaluated by analyzing the water standard reference NIST 1643c and the aqua regia solution of the lake sediment reference material BCR 280. 相似文献
5.
The operational parameters of the graphite furnace for electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS), i.e. the internal carrier gas flow rate, the total carrier gas flow rate, the sample pretreatment temperature and the volatilization temperature, are optimized for oligoelement determinations (75As, 9Be, 112Cd, 50Cr, 65Cu, 103Rh, 123Sb). The volatilization temperatures of As and Cr are compared to those obtained by graphite furnace atomic absorption spectrometry (GFAAS). Several modifiers Mg(NO3)2, Pd(NO3)2, Mg(NO3)2/Pd(NO3)2, Ni(NO3)2, KI, (NH4)H2PO4 have been tested using the concentrations recommended for GFAAS. The concentration of Mg(NO3)2 alone and in combination with NaCl has been varied to find the optimal modifier conditions. ETV-ICP-MS signal enhancements by a factor of 10 to 130 respective to those of conventional nebulization have been obtained. The optimized parameters are evaluated by analyzing the water standard reference NIST 1643c and the aqua regia solution of the lake sediment reference material BCR 280. 相似文献
6.
《Spectrochimica Acta Part B: Atomic Spectroscopy》2005,60(9-10):1342-1348
A method for the direct determination of trace rare earth elements in ancient porcelain samples by slurry sampling fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry was developed with the use of polytetrafluoroethylene as fluorinating reagent. It was found that Si, as a main matrix element in ancient porcelain sample, could be mostly removed at the ashing temperature of 1200 °C without considerable losses of the analytes. However, the chemical composition of ancient porcelain sample is very complicated, which makes the influences resulting from other matrix elements not be ignored. Therefore, the matrix effect of ancient porcelain sample was also investigated, and it was found that the matrix effect is obvious when the matrix concentration was larger than 0.8 g l− 1. The study results of particle size effect indicated that when the sample particle size was less than 0.057 mm, the particle size effect is negligible. Under the optimized operation conditions, the detection limits for rare earth elements by fluorinating electrothermal vaporization inductively coupled plasma mass spectrometry were 0.7 ng g− 1 (Eu)–33.3 ng g− 1(Nd) with the precisions of 4.1% (Yb)–10% (La) (c = 1 μg l− 1, n = 9). The proposed method was used to directly determine the trace rare earth elements in ancient porcelain samples produced in different dynasty (Sui, Ming and Qing), and the analytical results are satisfactory. 相似文献
7.
《Spectrochimica Acta Part B: Atomic Spectroscopy》1997,52(1):75-82
A method is described for the direct determination of arsenic in fresh and saline waters by electrothermal vaporization inductively coupled plasma mass spectrometry. Arsenic could be determined directly in waters containing up to 10 000 μg ml−1 NaCl without interference from the formation of 75ArCl+. For non-saline waters, arsenic was determined directly with the addition to both aqueous calibration standards and samples of 0.1 μg each of Pd and Mg to act as physical carriers. For the analysis of highly saline waters, the use of Pd and Mg chemical modifier served to thermally stabilize arsenic up to a temperature of 1000°C, while the separate addition of 8 mg of ammonium nitrate was used to remove chloride from the sample. This eliminated serious spectral interference on 75As+ from 75ArCl+. Although the ArCl+ spectral interference was completely eliminated, residual Na co-volatilized with As caused signal suppression, requiring the use of the method of standard additions for calibration. An absolute limit of detection limit for As of 0.069 pg was obtained corresponding to 6.9 pg ml−1 in a 10 μl sample. 相似文献
8.
Isaac J. Arnquist Thomas E. Kreschollek James A. Holcombe 《Spectrochimica Acta Part B: Atomic Spectroscopy》2011,66(3-4):255-260
The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51V and 53Cr suffering from Cl interferences (51ClO+ and 53ClO+ respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51V and 53Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar. 相似文献
9.
Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of As and Se in soil and sludge 总被引:2,自引:0,他引:2
Slurry sampling electrothermal vaporization (ETV) inductively coupled plasma mass spectrometry (ICP-MS) has been applied to determine As and Se in soil and sludge samples. The influences of instrument operating conditions and slurry preparation on the ion signals were reported. Pd and ascorbic acid were used as mixed modifiers to enhance the ion signals. The effectiveness of ETV sample introduction technique for alleviating various spectral interferences in ICP-MS analysis has been demonstrated. This method has been applied to determine As and Se in NIST SRM 2709 San Joaquin soil reference material and NIST SRM 2781 domestic sludge reference material and a farmland soil sample collected locally. Since the sensitivities of As and Se in slurry solution and aqueous solution were different, analyte addition technique was used to determine As and Se in these samples. The As and Se analysis results of the reference materials agreed with the certified values. The precision between sample replicates was better than 5% for all determinations. The method detection limit estimated from analyte addition curves was about 0.03 and 0.02 μg g−1 for As and Se, respectively, in original soil and sludge samples. 相似文献
10.
P Bermejo-Barrera E Beceiro-Gonzalez A Bermejo-Barrera F Bermejo-Martinez 《The Analyst》1990,115(5):545-547
A sensitive method for the determination of vanadium in water by electrothermal atomisation atomic absorption spectrometry (ETAAS) is described. The vanadium is chelated with 8-hydroxyquinoline in isobutyl methyl ketone and determined by ETAAS after pre-heating the pyrolytic graphite coated graphite tube of a graphite furnace atomiser before injection. The effects of the pH and amount of reagent required for the extraction were studied. The precision, accuracy and interferences of the method were also investigated. The proposed method allows concentrations of vanadium of 0.16 microgram l-1 to be detected. 相似文献
11.
《Spectrochimica Acta Part B: Atomic Spectroscopy》2005,60(3):403-407
An inductively coupled plasma-atomic emission spectrometry (ICP-AES) method is developed for determination of Cd, Co, Cr, Cu, Ni, Tl and Zn in traces in calcite, CaCO3, dolomite, CaMg(CO3)2, and gypsum, CaSO4. Interferences of a Ca/Mg matrix on analyte intensities were investigated. The results reveal that Ca does not interfere with Cr, Ni and Zn, but tends to decrease the intensity of the other elements. Magnesium as a matrix element does not interfere on with Zn, but increases the intensities of Ni, Cr and Cu, and decreases the intensities of Cd, Co and Tl. To eliminate these matrix interferences on trace element intensities, a flotation separation method is proposed. Lead(II) hexamethylenedithiocarbamate, Pb(HMDTC)2, is applied as a collector for flotation of trace elements from acidic solutions of mineral samples. The flotation of acidic aqueous solutions of calcite, dolomite and gypsum was performed at pH 6.0, using 10 mg l−1 Pb and 0.3 mmol l−1 HMDTC− added to 1 l of solution tested. The method detection limits of analytes in different minerals range from 0.02 to 0.06 μg g−1 for Cd, 0.04 to 0.10 μg g−1 for Co, 0.03 to 0.13 μg g−1 for Cr, 0.02 to 0.16 μg g−1 for Cu, 0.09 to 0.30 μg g−1 for Ni, 6.45 to 7.71 μg g−1 for Tl and 0.18 to 0.20 μg g−1 for Zn. 相似文献
12.
Ultrasonic slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry
(USS–ETV–DRC–ICP–MS) for the determination of Cr, Cd and Pb in several plastic samples, using NH4NO3 as the modifier, is described. The influences of the instrumental operating conditions and the slurry preparation technique
on the ion signals are investigated. A reduction in the intensity of the background at signals corresponding to chromium masses
(arising from matrix elements) was achieved by using NH3 as the reaction cell gas in the DRC. The method was applied to determine Cr, Cd and Pb in two polystyrene (PS) samples and
a polyvinyl chloride (PVC) sample using two different calibration methods, namely standard addition and isotope dilution.
The results were in good agreement with those for digested samples analyzed by ultrasonic nebulization DRC–ICP–MS. The precision
between sample replicates was better than 17% with the USS–ETV–DRC–ICP–MS method. The method detection limits, estimated from
standard addition curves, were about 6–9, 1–2 and 8–11 ng g−1 for Cr, Cd and Pb, respectively, in the original plastic samples. 相似文献
13.
《Spectrochimica Acta Part B: Atomic Spectroscopy》1995,50(11):1365-1382
The mechanism of vaporization of yttrium and the rare earth elements (REEs) has been studied using graphite furnace atomic absorption spectrometry (GFAAS) and inductively-coupled plasma mass spectrometry (ICP-MS). The appearance temperatures for Y and the REEs obtained by GFAAS were generally identical to the appearance temperatures obtained using ETV-ICP-MS. At lower temperatures, Y and the REEs are predominantly vaporized in atomic form or as oxides, while at temperatures above 2500°C, the elements are vaporized as oxides and/or carbides. This accounts for the very high sensitivity of ETV-ICP-MS compared to GFAAS for the determination of these elements. Absolute limits of detection for Y and all of the REEs using ETV-ICP-MS ranged from 0.002 pg for Tm to 0.2 pg for Ce. The use of freon as a chemical modifier was effective in controlling analyte carbide formation and reducing memory effects. 相似文献
14.
Okamoto Y 《Fresenius' Journal of Analytical Chemistry》2000,366(3):309-311
Inorganic bismuth(III) was converted to a methylbismuth species, possibly trimethylbismuth, by a thermochemical reaction with methyllithium. It instantly vaporized and was then introduced into the ICP ion source to detect the 209Bi signal. Utilizing an exchangeable small sample cuvette placed on the tungsten boat furnace for the reaction was very favorable from the viewpoints of easy handling, no memory effect, and maintenance of furnace conditions. In this manner, the analyte was vaporized at quite a low temperature (150 degrees C). The detection limit (3sigma) was 0.13 pg of bismuth and the precision in relative standard deviation for 5.0 pg of bismuth was determined to be 3.8% (n = 7). 相似文献
15.
以三酸消解钼矿石中的铼, 不经分离富集, 用电感耦合等离子体质谱法直接测定钼矿石样品中的铼。方法检出限可达0.012μg/g , 通过对国家岩石一级标准样品的测试, 测定结果一致;对GBW07285标准样品11 次测定的相对标准偏差(RSD) 为1.13%。 相似文献
16.
A comparison of slurry sampling (SS)-ETV-ICP-MS and slurry nebulization (SN)-ICP-MS for direct determination of trace impurities in titanium dioxide powder is made. The particle size effect, matrix effect and analytical characteristics of SSETV-ICP-MS and SN-ICP-MS are compared. The results have shown that SSETV-ICP-MS has a lower particle size effect and matrix effect compared to SN-ICP-MS. The analytical performance of the two methods reveals that SSETV-ICP-MS and SN-ICP-MS have similar relative detection limits (in the nanogram per liter level); however, the former has a lower absolute detection limit than the latter. Although the precision for SSETV-ICP-MS is a little worse than that for SN-ICP-MS, it is still acceptable for real sample analysis. The two methods were successfully applied for the determination of trace impurities in titanium dioxide powder samples with particle sizes of less than 50 nm, but only SSETV-ICP-MS could be applied for the determination of trace impurities in titanium dioxide powder samples with a particle size of 1 microm. 相似文献
17.
Y. Okamoto 《Analytical and bioanalytical chemistry》2000,366(3):309-311
Inorganic bismuth(III) was converted to a methylbismuth species, possibly trimethylbismuth, by a thermochemical reaction
with methyllithium. It instantly vaporized and was then introduced into the ICP ion source to detect the 209Bi signal. Utilizing an exchangeable small sample cuvette placed on the tungsten boat furnace for the reaction was very favorable
from the viewpoints of easy handling, no memory effect, and maintenance of furnace conditions. In this manner, the analyte
was vaporized at quite a low temperature (150 °C). The detection limit (3σ) was 0.13 pg of bismuth and the precision in relative
standard deviation for 5.0 pg of bismuth was determined to be 3.8% (n = 7).
Received: 6 June 1999 / Revised: 31 August 1999 / /Accepted: 23 September 1999 相似文献
18.
《Spectrochimica Acta Part B: Atomic Spectroscopy》2005,60(5):605-613
A method for the determination of Ag, As, Cd, Cu, Co, Fe, Mn, Ni, Pb, Sn and Tl in fuel alcohol by electrothermal vaporization inductively coupled plasma mass spectrometry is proposed. The determinations were carried out by external calibration against ethanolic solutions, without a chemical modifier, employing the following pyrolysis and vaporization temperatures: 400 °C and 2300 °C for the more volatile analytes and 1000 °C and 2500 °C for the less volatile analytes. The determination of As, Cd, Pb, Sn and Tl was additionally carried out using Pd as modifier at 800 °C pyrolysis and 2400 °C vaporization temperatures. The temperatures were optimized through pyrolysis and vaporization curves. Seven common fuel ethanol, one fuel ethanol with additive and one anhydrous fuel ethanol sample have been analyzed. The measured concentrations were at the μg L−1 level or lower. Since there is no certified reference material for fuel ethanol, the accuracy of the method was checked by the recovery test, with recoveries from 75% to 124%. The limits of detection (LODs), in μg L−1, and the relative standard deviations for 5 replicates were, for the elements in the conditions without modifier: Ag: 0.015 and 9.1%, Co: 0.002 and 10%, Cu: 0.22 and 6.6%, Fe: 0.72 and 4.3%, Mn: 0.025 and 12%, Ni: 0.026 and 9.3%, and for the elements with Pd: As: 0.02 and 2.9%, Cd: 0.07 and 25%, Pb: 0.02 and 3.1%, Sn: 0.010 and 6.0%, Tl: 0.0008 and 2.5%. Electrothermal vaporization avoids the loading of the plasma with organics, allowing the analysis of fuel ethanol by ICP-MS with good accuracy and reasonable precision. 相似文献
19.
《Spectrochimica Acta Part B: Atomic Spectroscopy》2001,56(10):1941-1949
A simple separation procedure for noble metals based on cloud point extraction is proposed. The analyte ions in aqueous acidic solution, obtained by the acid digestion of the samples, were complexed with O,O-diethyl-dithiophosphate and Triton X-114 was added as a non-ionic surfactant. By increasing the temperature up to the cloud point, a phase separation occurs, resulting in an aqueous phase and a surfactant-rich phase containing most of the analytes that were complexed. The metals in the surfactant-rich phase were determined by electrothermal vaporization inductively coupled plasma mass spectrometry. The extraction conditions as well as the instrumental parameters were optimized. Enrichment factors ranging from 7 (Rh) to 60 (Pt) and limits of detection from 0.6 (Pt) to 3.0 ng l−1 (Rh) were obtained in the digested samples. The extraction was not efficient for Ir. Among the reference materials analyzed in this work, only one (SRM 2670, urine) presented recommended values for Au and Pt. Due to the non-availability of adequate CRMs, accuracy was assessed by spiking known analyte amounts to the acid digests. Recoveries close to 100% were observed for all the studied elements but Ru. Poor agreement between found and recommended values was observed for non-digested urine sample, probably due to the carrier effect of co-extracted residual matrix components. However, good agreement was reached after urine acid mineralization. 相似文献
20.
A method is developed for determination of trace elements, including Ag, As, Cd, Co, Cr, Cu, Mn, Ni, Se, Tl and Zn, in fish otoliths by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS). Hydrofluoric acid was used to precipitate calcium resulting from acid dissolution of otolith calcium carbonate. Initial acidity of the sample solution influenced the precipitation efficiency of calcium fluoride. Up to 99.5% of Ca was precipitated in solutions that contained less than 2% (v/v) HNO3. Recoveries of the elements obtained from spiked artificial otolith solutions were between 90 and 103%. Stabilization of the elements within the ETV cell was achieved with 0.3 μg Pd/0.2 μg Rh chemical modifier that also afforded optimum sensitivity for multielement determination. The method was validated by the analysis of a fish otolith reference material (CRM) of emperor snapper, and then applied to the determination of the trace elements in otoliths of several fish species captured in Raritan Bay, New Jersey. Results indicated that fish physiology and biological processes could influence the levels of Cu, Mn, Se and Zn in the otoliths of fish inhabiting a similar aqueous environment. Otolith concentrations of Cr and Ni did not show any significant differences among different species. Concentrations for Ag, As, Cd, Co and Tl were also not significantly different, but were very low indicating low affinity of otolith calcium carbonate to these elements. 相似文献