首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
无机离子的核磁共振是研究溶液中分子结构与动力学现象的一种有力工具。~7Li、~(23)Na、~(39)K、~(25)Mg、~(205)Tl NMR等研究所获取的信息,能有助于阐明有关金属离子与小分子、分子膜、蛋白质等之间的相互作用。~(113)Cd核对溶液中的瞬时环境很敏感,但以~(113)Cd NMR研究溶液中Cd~(2+)与配体的配合研究却不多。本文以~(113)Cd NMR研究了在H_2O中Cd~(2+)与18-冠-6(18C6)、12-冠-4(12C)的配合作用;以非线性最小二乘法程序拟合计算出在H_2O中CdSO_4离子对的形成常数;同时,用~(113)Cd NMR测量了两种配体与Cd~(2+)竞争配合物形成常数,这些研究尚未见文献报道。  相似文献   

2.
The extraction of UO 2 2+ , Am3+, and Th4+ by 1-phenyl-3-methyl-4-benzylpyrazolone with crown ethers was studies using 0.1M (NaClO4) aqueous phase and toluene. The crown ethers were 12C4, 15C5, 18C6, DB18C6 and DCH18C6. The synergic equilibrium constant did not show correlation between the cationic radii and the ether cavity size nor did the values follow a simple order of ether basicity. The ether basicity, steric effects, and the number of ether oxygens bound to the cation are the combined factors which seemingly determine the pattern of M(PMBP)n—CE interaction.  相似文献   

3.
A new dibenzo[24]crown-8 derivative (1) was synthesized and functionalized with aromatic moieties such as naphthalene and coumarin units. These two fluorophores are known to form an effective FRET (Forster resonance energy transfer) pair, and this formed the basis for the design of this host crown ether derivative. Results of the steady-state and time-resolved fluorescence studies confirmed the resonance energy transfer between the donor naphthalene moiety and acceptor coumarin fragment, while NMR spectra and computational studies support a folded conformation for the uncomplexed crown ether 1. This was found to form an inclusion complex, a [2]pseudorotaxane type with imidazolium ion derivatives as the guest molecules with varying alkyl chain lengths ([C(4)mim](+) or [C(10)mim](+)). The host crown ether (1) tends to adopt an open conformation on formation of the interwoven inclusion complex (1·[C(4)mim](+) or 1·[C(10)mim](+)). This change in conformation, from the folded to a open one, was predicted by computational as well as (1)H NMR studies and was confirmed by single crystal X-ray structure for one (1·[C(4)mim](+)) of the two inclusion complexes. The increase in the effective distance between the naphthalene and coumarin moieties in the open conformation of these inclusion complexes was also supported by the decrease in the effective FRET process that was operational between naphthalene and coumarin moieties in the free molecule (1). Importantly, this inclusion complex formation was found to be reversible, and in the presence of a stronger base/polar solvent, such as triethyl amine/DMSO, the deprotonation/effective solvation of the cationic imidizolium ions ([C(4)mim](+) or [C(10)mim](+)) resulted in decomplexation or dethreading with restoration of the original emission spectra for 1, which signifies the subsequent increase in the FRET process. Thus we could demonstrate that a molecular folding-unfolding type of movement in the crown ether derivative could be induced by chemical input as an imidazolium ion.  相似文献   

4.
Russian Journal of General Chemistry - Exploratory, regression, and neural network analysis of the stability constants of crown ether [12C4, 16C5, (CH3)216C5, DB21C7, DB24C8, DCH24C8, DB30C10] 1 :...  相似文献   

5.
Kimura K  Tsuchida T  Maeda T  Shono T 《Talanta》1980,27(10):801-805
The properties of cis- and trans-bis(crown ether)s containing benzo-15-crown-5 or benzo-18-crown-6 units as complexants and extractants for alkali metal picrates have been studied. The optical spectra suggest that the cis-bis(crown ether)s can form intramolecular 2:1 crown ether unit/cation complexes with particular metal cations easily, while the trans-bis(crown ether)s can form only 1:1 crown ether unit/cation complexes because of the unfavourable trans configuration for the formation of the 2:1 complexes. It was found that the cis isomer possesses much higher extractive power than the trans isomer for the metal cations, which also reflects their complexing properties. The extraction equilibrium constants and thermodynamic quantities have been also evaluated, and the effect of the stereochemical structure of the bis(crown ether) on the complexing and extractive properties is discussed.  相似文献   

6.
The effect of benzo-15-crown-5,15-crown-5 and 12-crown-4 on the oxidation of triethylamine by aqueous ferricyanide ion has been studied at pH 4, 7 and 11. The crown ethers retard the normal oxidation process at all pH values, the effect depending on the crown ether concentration. The three crown ethers show the same retardation effect at pH 4 and 7, while at pH 11 the retardation decreases in the order B15C5 > 12C4 > 15C5.  相似文献   

7.
Double‐armed crown ether aldehydes ( 1–3 ) were synthesized from the reaction of 2 equiv salicylaldehyde, 4‐hydroxy‐3‐methoxybenzaldehyde (vanillin), and 3‐hydroxy‐4‐methoxybenzaldehyde (iso‐vanillin) with 4′,5′‐bis(bromomethyl)benzo‐15‐crown‐5. New crown ethers imine compounds ( 4–9 ) were synthesized by the condensation of corresponding crown ether aldehydes ( 1–3 ) with 4‐amino‐1,2‐dihydro‐1,5‐dimethyl‐2‐phenyl‐3H‐pyrazole‐3‐one and 2‐furan‐2‐yl‐methylamine. Sodium complexes ( 1a–9a) of the crown compounds form crystalline 1:1 (Na+:ligand) stoichiometries and were also synthesized. The structures of the crown ether aldehydes ( 1–3 ), imine compounds ( 4–9 ), and complexes ( 1a–9a ) were confirmed on the basis of elemental analyses, IR, 1H and 13C NMR, and mass spectrometry. © 2013 Wiley Periodicals, Inc. Heteroatom Chem 24:100–109, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.21070  相似文献   

8.
A new fullerene derivative with an ammonium subunit has been prepared. Its ability to form supramolecular complexes with oligophenylenevinylene derivatives bearing one or two crown ether moieties has been evidenced by electrospray mass spectrometry, and UV-visible and luminescence spectroscopy experiments. Interestingly, the assembly of the C60-ammonium cation with the oligophenylenevinylene derivative bearing two crown ether moieties leads to the cooperative formation of the 2:1 complex owing to intramolecular fullerene-fullerene interactions.  相似文献   

9.
Syntheses and Crystal Structures of the Nitrido‐chloro‐molybdates [Mg(THF)4{NMoCl4(THF)}2] · 4 CH2Cl2 and [Li(12‐Crown‐4)(NMoCl4)]2 · 2 CH2Cl2 Both the title compounds as well as [Li(12‐crown‐4)2]+MoNCl4 were made from MoNCl3 and the chlorides MgCl2 and LiCl, respectively, in dichloromethane suspensions in the presence of tetrahydrofuran and 12‐crown‐4, respectively. They form orange‐red moisture‐sensitive crystals, which were characterized by their IR spectra and partly by crystal structure analyses. [Mg(THF)4{NMoCl4(THF)}2] · 4 CH2Cl2 ( 1 ): space group C2/m, Z = 2, lattice dimensions at –50 °C: a = 1736.6(1), b = 1194.8(1), c = 1293.5(2) pm; β = 90.87(1)°; R1 = 0.037. In 1 the magnesium ion is coordinated octahedrally by the oxygen atoms of the four THF molecules and in trans‐position by the nitrogen atoms of the two [N≡MoCl4(THF)] ions. [Li(12‐crown‐4)(NMoCl4)]2 · 2 CH2Cl2 ( 2 ): space group P 1, Z = 1, lattice dimensions at –70 °C: a = 930.4(1), b = 957.9(1), c = 1264.6(1) pm; α = 68.91(1)°, β = 81.38(1)°, γ = 63.84(1)°; R1 = 0.0643. 2 forms a centrosymmetric ion ensemble in the dimeric cation of which, i. e. [Li(12‐crown‐4)]22+, the lithium ions on the one hand are connected to the four oxygen atoms each of the crown ether molecules in a way not yet known; and in addition, each of the lithium ions enters into a intermolecular Li–O bond with neighboring crown ether molecules under formation of a Li2O2 four‐membered ring. The two N≡MoCl4 counterions are loosely coordinated to one oxygen atom each of the crown ether molecules with Mo–O distances of 320.2 pm.  相似文献   

10.
A novel series of benzo crown ether (dibenzo 18-crown-6 ether, benzo 18-crown-6 ether, and benzo 15-crown-5 ether) functionalized enamines derivatives from amino benzo crown ether (4-amino dibenzo 18-crown-6 ether, 4-amino benzo 18-crown-6 ether, 4-amino benzo 15-crown-5 ether) and substituted 3-(dimethylamino)-1-phenylprop-2-en-1-one compounds have been synthesized. All the synthesized compounds were characterized by infrared, 1H NMR, 13C NMR, distortionless enhancement polarization transfer, and mass and elemental analysis techniques. The cation recognition property for benzo crown ether enamine 8a was studied by absorption and fluorescence spectroscopy.  相似文献   

11.
A conductance study of the interaction between substituted ammonium ions with three crown ethers in aqueous solution has been carried out at different temperatures. The formation constants of the 1 : 1 complexes at various temperatures were determined from the molar conductance-mole ratio data and found to vary in the order 18C6 > 15C5 > 12C4 for the same salt and with the same crown, the formation constants vary in the order (C2H5)3NHCl > (C2H5)4NBr > (CH3)3NPhI.The enthalpy and entropy of complexation were determined from the temperature dependence of the formation constants. The results indicate that the complexation process is enthalpy unfavored and entropy favored. The influence on the thermodynamic data for different parameters such as cavity size of crown ethers and nature of salt are discussed.  相似文献   

12.
The photochromic process of an indolinospiropyran with a crown ether fragment (BN-BIPS) was studied by nanosecond laser photolysis technique. The results show that quinonic merocyanine B was formed via an excited singlet state from BN-BIPS; in acetonitrile solution, the transient absorption of merocyanine B showed an obvious decay while a new transient absorption at 440nm (from isomer C) was observed simultaneously. The decay of merocyanine B and the formation of isomer C (at 440nm) were accelerated in the presence of alkali metal cation. In contrast, the formation of isomer C was not observed in spiropyran without a crown ether fragment: BIPS.  相似文献   

13.
The preparation of a series of crown ether ligated alkali metal (M=K, Rb, Cs) germyl derivatives M(crown ether)nGeH3 through the hydrolysis of the respective tris(trimethylsilyl)germanides is reported. Depending on the alkali metal and the crown ether diameter, the hydrides display either contact molecules or separated ions in the solid state, providing a unique structural insight into the geometry of the obscure GeH3? ion. Germyl derivatives displaying M? Ge bonds in the solid state are of the general formula [M([18]crown‐6)(thf)GeH3] with M=K ( 1 ) and M=Rb ( 4 ). The compounds display an unexpected geometry with two of the GeH3 hydrogen atoms closely approaching the metal center, resulting in a partially inverted structure. Interestingly, the lone pair at germanium is not pointed towards the alkali metal, rather two of the three hydrides are approaching the alkali metal center to display M? H interactions. Separated ions display alkali metal cations bound to two crown ethers in a sandwich‐type arrangement and non‐coordinated GeH3? ions to afford complexes of the type [M(crown ether)2][GeH3] with M=K, crown ether=[15]crown‐5 ( 2 ); M=K, crown ether=[12]crown‐4 ( 3 ); and M=Cs, crown ether=[18]crown‐6 ( 5 ). The highly reactive germyl derivatives were characterized by using X‐ray crystallography, 1H and 13C NMR, and IR spectroscopy. Density functional theory (DFT) and second‐order Møller–Plesset perturbation theory (MP2) calculations were performed to analyze the geometry of the GeH3? ion in the contact molecules 1 and 4 .  相似文献   

14.
The pentiptycene derived bis(crown ether)s with two 24-crown-8 moieties in the cis position could include the CBPQT(4+) ring inside their cavities to form 1:1 complexes, and the naphthalene groups connected in the crown ether moieties showed less effective complexation ability toward the CBPQT(4+) ring than the host containing two terminal benzene rings. This result was probably due to the stereohindrance effect of the naphthalene groups, and it was obviously different from that of the pentiptycene derived mono(crown ether)s. For the pentiptycene derived bis(crown ether) with two 24-crown-8 moieties in the trans position, it formed a 1:2 stable complex with the CBPQT(4+) salt in solution and in the solid state, in which the pentiptycene moiety played an important role in stabilizing the complex. Moreover, binding and release of the CBPQT(4+) ring in the complexes based on the pentiptycene-derived crown ethers could be chemically controlled by adding and removing potassium ions, in which the complexation modes played the key role. Interestingly, it was further found that switching the role of the CBPQT(4+) ring in host and guest systems based on the pentiptycene derived bis(crown ether)s was easily achieved, which represents a new kind of supramolecular system.  相似文献   

15.
Reaction rate constants of crown ethers (12-crown-4, 15-crown-5, 18-crown-6) and their analogs 1,4-dioxane (6C2) with some important oxidative radicals, hydroxyl radical (OH), sulfate radical (SO4?) and nitrate radical (NO3), were determined in various aqueous solutions by pulse radiolysis and laser photolysis techniques. The reaction rate constants for 6C2 and crown ethers with OH and SO4? increase with the number of hydrogen atoms in the ethers, indicating that the hydrogen-atom abstraction is a dominant reaction between crown ethers and these two radicals. The presence of cations in solution has negligible effect on the rate constants of crown ether towards OH and SO4?. However, for the NO3, the rate constants are not proportional to the number of hydrogen atoms in ethers, and 12-crown-4 (12C4) is the most reactive compared with other crown ethers. Except 12C4 and 6C2, the cations in the aqueous solution affect the reactivities of 15-crown-5 (15C5) and 18-crown-6 (18C6). The cations with high binding stability for crown ether would improve the reactivity of 15C5. For the studied crown ethers, the reaction rate constants of these oxidative radicals have the order OH>SO4?>NO3. Furthermore, the formation of radicals after the reaction of crown ethers with sulfate radical could be observed in the range of 260–280 nm using laser photolysis and pulse radiolysis. This is the first report on the kinetic behavior of crown ethers with NO3, and it would be helpful for the understanding of stability of crown ethers in the processing of spent nuclear fuel.  相似文献   

16.
本文报道1^H、7^Li、23^Na、133^Cs NMR测定N, N'-二羧甲基大环醚双内酯(1-4)和大环胺双内酰胺(5), N-对甲苯磺酰基大环醚双内酯(6, 7), 4'-丹磺酰氨基苯并-18-冠-6(8)与Li^+、Na^+、K^+、Cs^+、Cd^2+和Pb^2+金属离子的配位作用, 并以非线性最小二乘法拟合计算了配合物的形成常数; 同时, 发展了一种用133^Cs NMR测量冠醚和碘离子竞争配合Cs^+的配合物形成常数的新技术。  相似文献   

17.
Calorimetric titrations are used to study the interactions between the crown ether 18-crown-6 and several α,ω-diamino dihydrochlorides in aqueous solution. These complexes are formed by ion-dipole interactions between the positively charged nitrogen atoms and the oxygen donor atoms of the crown ether. Depending on the experimental conditions, the formation of 1:1 or 2:1 complexes (ligand:diamines) can be studied. The solvation of the ligand and the amines are responsible for the observed thermodynamic values. The number of water molecules released during the reaction were calculated from the determined reaction entropies. Formation of 1:1 complexes distorts the solvation shell around the molecules. As a result, the number of solvent molecules released during the formation of the 2:1 complexes is slightly smaller than the number released from formation of the 1:1 complex. No experimental evidence is observed for the formation of complexes between one crown ether and two protonated amino groups.  相似文献   

18.
郭艳玲  李靖 《合成化学》1999,7(2):187-190
以甘油单三苯甲基醚为原料,分别与乙二醇,二甘醇和三甘醇的双对甲苯磺酸酯经三步反应,合成得到双羟甲基-12-冠-4,双羟甲基-15-冠-5,双羟甲基-18-冠-6,双羟甲基-21-冠-7和双羟甲基-24-冠-8等一系列新型醚化合物。  相似文献   

19.
Macrocyclic polyethers containing a cholesteryl moiety, e.g., cholesteryl benzo‐15‐crown‐5 (C27H45OOC‐B15C5) and cholesteryl cryptand22 (C27H45OOC‐Cryptand22), were synthesized. The cholesteryl crown ether C27H45OOC‐B15C5 showed liquid crystal characteristics which were observed by polarizing microscopy. In contrast, the cholesteryl cryptand C27H45OOC‐Cryptand22 showed no liquid crystal characteristics. The doping effect of inorganic salts on the liquid crystal formation of cholesteryl benzo‐15‐crown‐5 was also investigated, revealing that the addition of salts resulted in narrower liquid crystal temperature ranges. Both cholesteryl cryptand C27H45OOC‐Cryptand22 and cholesteryl crown ether C27H45OOC‐B15C5 also exhibited the distinctive characteristics of surfactants in solutions. Fluorescence probe of pyrene and surface tension measurement were applied as sensitive tools to study the formation of the micelles and determine the critical micellar concentration (CMC) of the cholesteryl cryptand and crown ether surfactants. The salt effect on the CMC of the cholesteryl cryptand surfactant was also investigated and is discussed. Furthermore, the cholesteryl benzo‐15‐crown‐5 was successfully employed as a quite good phase transfer catalyst for the oxidation of alcohols, e.g., benzhydrol, with NaMnO4 as an oxidant. Effects of temperature, solvent and concentration of the crown ether catalyst on the oxidation of benzhydrol were also investigated.  相似文献   

20.
We synthesised a new N-benzylaza-21-crown-7 ether 5 with a dihydroxy coumarin as a fluorescence sensor and investigated the binding behaviour towards alkali metal cations in methanol by fluorescence titrations. The association constants are within one order of magnitude, with the exception of sodium. Potassium is the preferred binding partner (K(Na)=330 M(-1); K(K)=8600 M(-1); K(Rb)=8200 M(-1); K(Cs)=4400 M(-1)). The corresponding aza-21-crown-7 ether (6) was attached by a methylene unit to a resorcarene to give fluorescent calix crown ether 12. The binding abilities of the calix crown ether towards alkali metal ions in methanol have also been investigated, and an increasing complex stability, distinct for potassium and rubidium in comparison with 5, was found: K(Na)=440 M(-1); K(K)=110,000 M(-1); K(Rb)=63,000 M(-1); K(Cs)=20,000 M(-1). Like bis(crown ether)s, a cooperative complexation of the crown ether and the cavitand scaffold can be assumed. The proposed complex geometry is supported by Kohn-Sham DFT calculations for the potassium and caesium complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号