首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 130 毫秒
1.
运用谐振腔变换圆理论,详细分析了激光二极管抽运的Nd:YVO4平行平面腔固体激光器振荡光在晶体内的基模光斑半径随抽运功率变化的U形曲线.提出在适当腔长情况下激光器的输出功率随抽运功率变化曲线上将出现凹陷或尖峰现象,利用曲线上的凹陷和尖峰可以测量激光晶体的热透镜焦距.同时在理论分析的基础上进行了实验,实验结果与理论分析相符合 关键词: Nd:YVO4 热透镜焦距 固体激光器 谐振腔变换圆  相似文献   

2.
LD端面泵浦Nd∶YAG激光器中的热透镜焦距   总被引:14,自引:6,他引:8  
杨永明  文建国  王石语  蔡德芳  过振 《光子学报》2005,34(12):1769-1772
采用热透镜焦距的理论计算与实验测量相比较的研究方法,得到一种端泵固体激光器出激光时的在线测量方法.通过建立热透镜等效腔模型以及腔型分析求解得出腔内光束束腰半径,用刀口法测出DPL腔外的远场发散角,根据发散角与透镜变换前后的束腰关系,得出LD端面泵浦Nd∶YAG激光器中的热透镜焦距.结果表明,通过上述方法所得结果与理论计算的热透镜焦距吻合,证实此方法准确、可行.  相似文献   

3.
根据He-Ne激光束的束腰变换测薄透镜的焦距陈智浩,余建斌,马上海(福建师范大学物理系,福州350007)在学生实验中,有多种方法可测透镜的焦距.本文设计的新实验,是根据He-Ne激光束的束腰变换来测量薄透镜的焦距.通过该实验,可以加强对激光束经透镜...  相似文献   

4.
分析了用光栅型波前曲率传感器测量热透镜焦距的基本原理,针对高功率固体激光器的工作特点,结合实验现象推导了在热透镜效应较强时热透镜焦距变化的计算公式。对半导体二极管(LD)侧面泵浦的百W级Nd:YAG激光棒在泵浦电流为15~25 A时的热透镜焦距值进行了测量,讨论了可能存在的误差。实验现象和理论分析一致,测量的热透镜焦距值与理论值符合得较好。  相似文献   

5.
采用曲率传感器测量热透镜焦距   总被引:1,自引:0,他引:1       下载免费PDF全文
 分析了用光栅型波前曲率传感器测量热透镜焦距的基本原理,针对高功率固体激光器的工作特点,结合实验现象推导了在热透镜效应较强时热透镜焦距变化的计算公式。对半导体二极管(LD)侧面泵浦的百W级Nd:YAG激光棒在泵浦电流为15~25 A时的热透镜焦距值进行了测量,讨论了可能存在的误差。实验现象和理论分析一致,测量的热透镜焦距值与理论值符合得较好。  相似文献   

6.
通过平平非稳腔法对激光热透镜焦距进行了实验测量,研究了不同抽运光束腰位置对热透镜焦距的影响.从理论上引入抽运光远场发散角和束腰位置,对端面抽运激光晶体热透镜焦距公式进行了改进.  相似文献   

7.
固体激光棒中的热透镜效应对激光器的性能有很大的影响.在固体激光器的热稳腔的设计中也需要知道激光棒的热透镜焦距的数值,因此测量激光棒的热透镜焦距是必要的和有意义的.我们采用类似于文献[1]中的方法,测量了三种常用的固体激光棒在泵浦期间和泵浦后,各个时刻的热透镜焦距的数值.在单脉冲泵浦期间,红宝石、Nd:YAG和钕玻璃三种激光棒的热透镜焦距均为负值.测量热透镜焦距的原理如图1所示.设He-Ne探测....  相似文献   

8.
采用大型透镜阵列对激光波前进行采样,实现了对宽光束的测量。大口径激光束经过大型透镜阵列进行采样形成光斑点阵,通过成像系统,获取点阵图像,得到激光束波前信息,根据激光传输理论和光学系统像差理论,已知激光束的波前函数和强度分布时,可以求出激光束会聚后在焦面处任意位置的光强,因此激光束的波前、发散角、近场分布、远场分布等参数能够通过测量求解得到。  相似文献   

9.
基于共轴双光束干涉法设计了激光热透镜效应及其等效焦距测量装置.使用厚度约为200μm的薄酱油层样品作为观察热透镜效应的介质,将其置于半导体激光器的汇聚点上,可以在光屏上观察到同心衍射圆环,定性演示激光热透镜效应,并对热透镜的等效焦距进行定量测量.实验结果显示:薄酱油层在半导体激光照射下产生的热透镜效应可等效为凹透镜;基于共轴双光束法的热透镜等效焦距测量较为准确,利用Origin软件对8组实验数据进行线性拟合,相关系数为0.997.  相似文献   

10.
提出了一种利用非准确联合变换相关测量透镜焦距的方法.该方法首先利用已知焦距透镜记录联合功率谱,再用记录的联合功率谱经被测焦距透镜输出相关点,记录相关点并测出其间距,可以计算出被测透镜的焦距.理论分析和实验结果表明,该方法有较高的测量准确度,能实现透镜焦距的自动测量.  相似文献   

11.
A simple method to determine the thermal focal length of LD end-pumped solid-state laser with stable resonator is presented. The M2 factor describing the quality of the beam can be obtained by scanning a slit through the multi-mode Gaussian beam field. The waist width of the beam and the corresponding TEM00 under the same parameters of laser are then deduced through the law of multi-mode Gaussian beam propagation. Based on the standard matrix theory of stable resonator, the thermal focal length of the gain medium can be easily achieved. To show the application of this approach, the thermal focal length of an LD pumped Nd:YVO4 laser is measured and the experimental results are in agreement with the theoretical prediction.  相似文献   

12.
周城 《中国物理 B》2009,18(4):1547-1552
This paper investigates the temperature field distribution and thermal focal length within a laser diode array (LDA) end-pumped YVO4/Nd:YVO4 rectangular composite crystal. A general expression of the temperature field distribution within the Nd:YVO4 rectangular crystal was obtained by analysing the characteristics of the Nd:YVO4 crystal and solving the Poisson equation with boundary conditions. The temperature field distributions in the Nd:YVO4 rectangular crystal for the YVO4/Nd:YVO4 composite crystal and the Nd:YVO4 single crystal are researched respec- tively. Calculating the thermal focal length within the Nd:YVO4 rectangular crystal was done by an analysis of the additional optical path differences (OPD) caused by heat, which was very identical with experimental results in this paper. Research results show that the maximum relative temperature on the rear face of the Nd:YVO4 crystal in the composite crystal is 150 K and the thermal focal length is 35.7 mm when the output power of the LDA is 22 W. In the same circumstances, the experimental value of the thermal focal length is 37.4 mm. So the relative error between the theoretical analysis and the experimental result is only 4.5%. With the same conditions, the thermal focal length of the Nd:YVO4 single crystal is 18.5 mm. So the relative rate of the thermal focal length between the YVO4/Nd:YVO4 crystal and the Nd:YVO4 crystal is 93%. So, the thermal stability of the output power and the beam quality of the YVO4/Nd:YVO4 laser is more advantageous than the laser with Nd:YVO4 single crystal.  相似文献   

13.
A simple method to measure the thermal focal length of solid-state laser with rate equation was presented. By measuring the output beam power of lasers, the beam waist of oscillating wave can be deduced from rate equation under the stable oscillation condition. Based on the ABCD matrix theory, the thermal focus of the gain medium was easily obtained. The thermal focus of a LD end-pumped Nd:GdVO4 laser was measured and the experimental results agreed with the theoretical predication.  相似文献   

14.
A numerical investigation is made on the thermal lensing and spherical aberration effect in an LD end-pumped Nd:YAG laser. Based on the finite element method (FEM), the laser rod temperature distribution is calculated and the focal length of the thermal lens is deduced, the influences of pump beam on the thermal lensing spherical aberration are mainly studied. The results show the thermal lens which focal length varied with the radial coordinate r is not an ideal lens. Given the heat dissipation boundary conditions, the radial dependent focal length will be shortened when the pump power raised or the waist radius of the pump beam reduced, meanwhile the radial differences of the focal length will decrease when the pump power increased. For a Super-Gaussian profile pump beam, the higher the exponent number, the more similar to flat top the pump beam is, and the less the radial differences of the focal length are.  相似文献   

15.
薄片激光器热效应及其对输出功率的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
赵建涛  冯国英  杨火木  唐淳  陈念江  周寿桓 《物理学报》2012,61(8):84208-084208
建立了光强分布为高斯型的抽运光端面单程抽运时薄片激光器的温度模型, 实验测量了不同抽运功率下薄片介质表面的 温度分布、温度随时间的变化特性以及介质表面的温度差. 采用Hartmann法测量了薄片介质的热焦距. 考虑热焦距随抽运功率的变化, 基于四能级系统薄片激光器的速率方程组, 建立了薄片激光器热效应对输出功率影响的物理模型, 薄片激光器输入-输出功率曲线与实际相符. 所得结果对薄片激光器的设计和优化具有一定的指导意义.  相似文献   

16.
高功率激光光束特性对激光加工的影响   总被引:4,自引:0,他引:4  
决定光与物质相互作用的激光束的波长、入射角、偏振特性以及时间和空间特性是激光材料加工的主要光束特性。激光束的光束质量是其空间特性的量化反映。通过对两种不同激光加工系统输出激光光束质量进行测量和计算,根据多模激光束的聚焦理论,以及对激光深熔焊接实验结果的分析,研究了光束质量对深熔焊接焊缝成形的影响。结果表明,光束质量对聚焦光束的焦斑、聚焦角和焦深的影响不仅体现了激光源的可聚焦性,而且也标志了激光源的可加工能力,这是聚焦系统和焦点位置在选择过程中应该考虑的重要因素。  相似文献   

17.
H. Nadgaran  P. Elahi 《Pramana》2006,66(3):513-519
In this work, the inhomogeneous equation of heat conduction was exactly solved by applying inhomogeneous boundary conditions for laser crystals of aspect ratio=1 (aspect ratio=radius of the laser rod/length of the laser rod). We have shown that the paraxial ray approximation leads the solution to be a function ofr 2 , that is, the approximation is equivalent to a situation in which a homogeneous pump source is used. The solution was then used to derive expressions for the overall phase shift, focal length of the thermal lens and the end effect induced curvature of the end face. The expressions were then applied to Nd:YAG laser medium. The result shows a meaningful correction of the order of 0.001 cm to the focal length of Nd:YAG rod for 3 W source power and beam waist of 100 μm.  相似文献   

18.
The temperature distribution in the gain medium and key design parameters for an ideal-four level end-pumped solid-state laser have been analyzed depending on the crystal's length, absorption coefficient, and pump beam M2 factor. The optimum key design parameters and thermal focal lens are obtained by minimizing the root mean square of pump beam radius in the laser crystal. It is found that the focal thermal lens and key design parameters are dependent on the gain medium characteristics and pump beam properties as well. By considering the Poisson equation in cylindrical coordinate and Top-Hat pumping profile, an analytical formula has been derived to introduce the thermal focal length in the end-pumped lasers. A formula is also presented to relate the requirements of pump source to the gain medium properties for working laser at the design point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号