首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
NO2 was photolyzed with 2288 Å radiation at 300° and 423°K in the presence of H2O, CO, and in some cases excess He. The photolysis produces O(1D) atoms which react with H2O to give HO radicals or are deactivated by CO to O(3P) atoms The ratio k5/k3 is temperature dependent, being 0.33 at 300°K and 0.60 at 423°K. From these two points, the Arrhenius expression is estimated to be k5/k3 = 2.6 exp(?1200/RT) where R is in cal/mole – °K. The OH radical is either removed by NO2 or reacts with CO The ratio k2/kα is 0.019 at 300°K and 0.027 at 423°K, and the ratio k2/k0 is 1.65 × 10?5M at 300°K and 2.84 × 10?5M at 423°K, with H2O as the chaperone gas, where kα = k1 in the high-pressure limit and k0[M] = k1 in the low-pressure limit. When combined with the value of k2 = 4.2 × 108 exp(?1100/RT) M?1sec?1, kα = 6.3 × 109 exp (?340/RT)M?1sec?1 and k0 = 4.0 × 1012M?2sec?1, independent of temperature for H2O as the chaperone gas. He is about 1/8 as efficient as H2O.  相似文献   

2.
Kinetics of protonation of Li+, Na+, K+, and Cs+ salts of anthracene radical anions (A?·,Cat+) and dianions (A2?, 2Cat+) by MeOH and MeOD in tetrahydrofuran (THF) and dimethoxyethane (DME) led to the determination of the isotope effect (kH/kD) in the following reactions: Studies of cation and solvent influence on the rate constants of these reactions and on the magnitude of the isotope effect permitted us to draw some conclusions about the structure of the pertinent transition states. It seems that only the tight A?·,Na+ pairs participate in the protonation, and on this basis the fraction of tight ion paris of A?·,Na+ in DME was estimated. Our results have been compared with data reported in the literature.  相似文献   

3.
The abstraction of hydrogen and deuterium from 1,2-dichloroethane, 1,1,2-trichloroethane, and two of their deuterated analogs by photochemically generated ground state chlorine atoms has been investigatedin the temperature range 0–95°C using methane as a competitor. Rate constants and their temperature coefficients are reported for the following reactions Over the temperature range of this investigation an Arrhenius law temperature dependence was observed in all cases. Based on the adopted rate coefficient for the chlorination of methane [L.F. Keyser, J. Chem. Phys., 69 , 214 (1978)] which is commensurate with the present temperature range, the following rate constant values (cm3 s?1) are obtained: The observed pure primary, and mixed primary plus α- and β3-secondary kinetic isotope effects at 298 K are k3/k6 = 2.73 ± 0.08, and k1/k2 = 4.26 ± 0.12, respectively. Both show a normal temperature dependence decreasing to k3/k6 = 2.39 ± 0.06 and k1/k2 = 3.56 ± 0.09 at 370 K. Contrary to some simple theoretical expectations, the kinetic isotope effect for H/D abstraction decreases with increasing number of chlorine substituents in the geminal group in a parallel manner to the trend established previously for C1-substitution in the adjacent group. The occurrence of a β-secondary isotope effect, k4/k5, is established; this effect suggests a slight inverse temperature dependence.  相似文献   

4.
The gas-phase photochlorination of perfluorocyclopentene under continuous and intermittent illumination with 4360-Å radiation was studied between 10° and 60°C. The rate constants for the reactions. (3) (4) were measured as k3 = (1.20 + 0.58) × 108 exp (?6.430 ± 177/RT) l·(mole sec) and k4 = (1.86 ± 0.76) × 107 l·(mole sec).  相似文献   

5.
The catalytic activity of iodine monobromide and iodine monochloride were investigated in the reaction, Et3SiOBun + BusOH ? Et3SiOBus + BunOH. Pseudo first-order rate constants were measured by gas chromatography, at 10°, 20°, 30°, and 40°C for iodine monobromide and at 10°, 20°, and 30°C for iodine monochloride, on reaction mixtures containing both butanols in excess. The catalytic coefficients of both catalysts were evaluated from the observed rate constants as follows: The activation paramaters were estimated from these data, and were compared with the values for iodine catalysis. These results are consistent with the mechanism previously proposed.  相似文献   

6.
A mixture of Br2 + HBr + C2F5I was photolyzed in the vapor phase. The reaction forms C2F5 radicals which are removed by Competitive studies over the range of 74–146°C gave ratios of k10/k9, and these were combined with values obtained previously by different methods at higher temperatures upto 515°C to give where θ = 2.303RT J/mol. A value is assigned to the activation energy E10, and this, with other data, leads to at 25°C. This result is in excellent agreement with two previous independent determinations.  相似文献   

7.
Absolute rate constants for the reaction of SiH4 with O(3P) atoms and OH radicals have been determined over the temperature range 297°–438°K using flash photolysis–NO2 chemiluminescence and flash photolysis–resonance fluorescence techniques, respectively. The Arrhenius expressions obtained are where the error limits in the Arrhenius activation energies are the estimated overall error limits. Rate data for the reactions of SiH4, CH4, and H2S with O(3P), H, and F atoms and with OH, CH3, and CF3 radicals are compared, showing that H2S and SiH4, which have similar bond energies, have reasonably similar reactivities toward these atoms and radicals.  相似文献   

8.
The solubilities of ZnCO3 and Zn5(OH)6(CO3)2 have been investigated at 25°C in solutions of the constant ionic strength 0,2 M consisting primarily of sodium perchlorate. From experimental data the following values for equilibrium constants and GIBBS free energies of formation are deduced: A predominance area diagram for the ternary system Zn2+–H2O–CO2(g) including ZnO, ZnCO3, Zn5(OH)6(CO3)2, and Zn2+ is given.  相似文献   

9.
The kinetics of oxygen exchange between water (H2O, D2O) and 18O-labelled bromate ion has been investigated over the range of 1.7 ≤ pH ≤ 14.3 and 20 ≤ °C ≤ 95. At 60° and ionic strength I ? 1.0M (NaNO3), the experimental results were consistent with the rate laws (R in moll?1 s?1): From the temperature dependence of the rate constants the activation parameters ΔH, ΔS and ΔC were derived. In the acid-catalysed region the form of the rate law and the direction of the solvent isotope effect were the same as previously found, but the numerical values of ΔH and k2H/k2D differ considerably. For the spontaneous and the OH?-catalysed exchange reactions bimolecular displacement mechanisms are proposed.  相似文献   

10.
The method of chemical difference was utilized to accurately determine the relative importance of all the reaction steps in the direct photolysis of N2O at 2139 Å (25° and 250°C) and 1849 Å (25° C), as well as in the Hg6(1P1)-sensitized photolysis of N2O at 1849 Å (25°C). In all cases, the primary process is predominantly, if not exclusively, Experiments with trace amounts of C3H6 added showed a slight, but not significant, difference in product ratios (N2 and O2). From these experiments the quantum yield of O(3P) from all possible sources was estimated as 0.02 ± 0.02. Experiments with excess N2 at 1849 Å indicated that O(1S) was not produced in the direct photolysis. The O(1S) yield is probably zero, and certainly <0.05. The O(1D) atom can react with N2O via The ratio k2/k3 was found to be 0.69 ± 0.05 in all cases. When combined with other data from our laboratory, the average value is 0.65 ± 0.07. This represents the value for translationally energetic O(1D) atoms. When excess He was added to remove the excess translational energy, k2/k3 rose to 0.83 ± 0.06, which is in reasonable agreement with the value of 1.01 ± 0.06 found in another laboratory. We conclude that for O(1D) atoms with no excess thermal energy, k2/k3 = 0.90 ± 0.10.  相似文献   

11.
The decomposition of ethane sensitized by isopropyl radicals was studied in the temperature range of 496–548°K. The rate of formation of n-butane, isopentane, and 2,3-dimethylbutane were measured. The expression k1/k2½ was found to be where k1 and k2 are rate constants of The decomposition of propylene sensitized by isopropyl radicals was studied between 494 and 580°K by determination of the initial rates of formation of the main products. The ratio of k13/k21/2 was evaluated to be where k13 is the rate constant for The isomerization of the isopropyl radical was investigated by studying the decomposition of azoisopropane. The decomposition of the iso-C3H7 radical into C2H4 and CH3 was followed by measuring the rate of formation of C2H4. On the basis of the experimental data, obtained in the range of 538–666° K, k15/k2½ was found: where k15 is the rate constant of   相似文献   

12.
The reactions of NH(X3Σ) with NO, O2, and O have been studied in reflected and incident shock wave experiments. The source of NH in all the experiments was the thermal dissociation of isocyanic acid, HNCO. Time-histories of the NH(X3Σ) and OH(X2Π) radicals were measured behind the shock waves using cw, narrow-linewidth laser absorption at 336 nm and 307 nm, respectively. The second-order rate coefficients of the reactions: were determined to be: and cm3 mol−1 s−1, where ƒ and F define the lower and upper uncertainty limits, respectively. The branching fraction of channel defined as k3b/k3total, was determined to be 0.19 ± 0.10 over the temperature range of 2940 K to 3040 K.  相似文献   

13.
According to our experiments the bromide ion concentration exhibits in the bromate–ascorbic acid–malonic acid–perchloric acid system three extrema as a function of time. To describe this peculiar phenomenon, the kinetics of four component reactions have been studied separately. The following rate equations were obtained: Bromate–ascorbic acid reaction: Bromate–bromide ion reaction: Bromide–ascorbic acid reaction: Bromine–malonic acid reaction: k4 = 6 × 10?3 s?1, k-4 ≥ 1.7 × 103 s?1, k5 ≥ 1 × 107M?1 · s?1 Taking into account the stoichiometry of the component reactions and using these rate equations, the concentration versus time curves of the composite system were calculated. Although the agreement is not as good as in the case of the component reactions, it is remarkable that this kinetic structure exhibits the three extrema found.  相似文献   

14.
The decomposition of dimethyl peroxide (DMP) was studied in the presence and absence of added NO2 to determine rate constants k1 and k2 in the temperature range of 391–432°K: The results reconcile the studies by Takezaki and Takeuchi, Hanst and Calvert, and Batt and McCulloch, giving log k1(sec?1) = (15.7 ± 0.5) - (37.1 ± 0.9)/2.3 RT and k2 ≈ 5 × 104M?1· sec?1. The disproportionation/recombination ratio k7b/k7a = 0.30 ± 0.05 was also determined: When O2 was added to DMP mixtures containing NO2, relative rate constants k12/k7a were obtained over the temperature range of 396–442°K: A review of literature data produced k7a = 109.8±0.5M?1·sec?1, giving log k12(M?1·sec?1) = (8.5 ± 1.5) - (4.0 ± 2.8)/2.3 RT, where most of the uncertainty is due to the limited temperature range of the experiments.  相似文献   

15.
O(1D), produced from the photolysis of N2O at 2139 Å, reacts with N2O in accord with: We have used the method of chemical difference to obtain an accurate measure of k2/k3 = 0.59 ± 0.01. Furthermore, the quantum yield of production of O(3P), either on direct photolysis or on deactivation of O(1D) by N2O, is less than 0.02 and probably zero.  相似文献   

16.
The pyrolysis of isobutane was investigated in the ranges of 770° to 855°K and 20 to 150 Torr at up to 4% decomposition. The reaction is homogeneous and strongly self-inhibited. A simple Rice-Herzfeld chain terminated by the recombination of methyl radicals is proposed for the initial, uninhibited reaction. Self-inhibition is due to abstraction of hydrogen atoms from product isobutene giving resonance-stabilized 2-methylallyl radicals which participate in termination reactions. The reaction chains are shown to be long. It is suggested that a previously published rate constant for the initiation reaction (1) is incorrect and the value k1 = 1016.8 exp (?81700 cal mol?1/RT)s?1 is recommended. The values of the rate constants for the reactions (4i) (4t) (8) are estimated to be and From a recalculation of previously published data on the pyrolysis of isobutane at lower temperatures and higher pressures, the value k11c, = 109.6 cm3 mol?1 s?1 is obtained for the rate constant of recombination of t-butyl. A calculation which is independent of any assumed rate constants or thermochemistry shows that the predominant chain termination reaction is the recombination of two methyl radicals in the conditions of the present work and the recombination of two t-butyl radicals in those of our previous study at lower temperatures and higher pressures.  相似文献   

17.
The thermal decomposition of SF5O3SF5 in the presence of CO has been investigated between -9.8°C and + 9.9°C. Besides traces of S2F10, equimolecular amounts of SF5O2SF5 and CO2 are formed. The reaction is homogeneous. Its rate is proportional to the pressure of the trioxide and in dependent of the total pressure, the pressure of inert gases and of carbon monoxide: where k = k1∞ = 1016.32±0.40 exp(?25,300 ± 500 cal)/RT sec?1. Consequently, In the presence of oxygen a sensitized CO2 formation is observed. A mechanism is given which explains the experimental results.  相似文献   

18.
i-C4H9ONO was photolyzed with 366-nm radiation at ?8, 23, 55, 88, and 120°C in a static system in the presence of NO, O2, and N2. The quantum yield of i-C3H7CHO, Φ{i-C3H7CHO}, was measured as a function of reaction of reaction conditions. The primary photochemical act is and it proceeds with a quantum yield ?1 = 0.24 ± 0.02 independent of temperature. The i-C4H9O radicals can react with NO by two routes The i-C4H9O radical can decompose via or react with O2 via Values of k4/k2 ? k4b/k2 were determined to be (2.8 ± 0.6) × 1014, (1.7 ± 0.2) × 1015, and (3.5 ± 1.3) × 1015 molec/cm3 at 23 55, and 88°C, respectively, at 150-torr total pressure of N2. Values of k6/k2 were determined from ?8 to 120°C. They fit the Arrhenius expression: For k2 ? 4.4 × 1011 cm3/s, k6 becomes (3.2 ± 2.0) × 10?13 exp{?(836 ± 159)/T} cm3/s. The reaction scheme also provides k4b/k6 = 3.59 × 1018 and 5.17 × 1018 molec/cm3 at 55 and 88°C, respectively, and k8b/k8 = 0.66 ± 0.12 independent of temperature, where   相似文献   

19.
Mixtures of cyanogen and nitrous oxide diluted in argon were shock-heated to measure the rate constants of A broad-band mercury lamp was used to measure CN in absorption at 388 nm [B2Σ+(v = 0) ← X2Σ+(v = 0)], and the spectral coincidence of a CO infrared absorption line [v(2 ← 1), J(37 ← 38)] with a CO laser line [v(6 → 5), J(15 → 16)] was exploited to monitor CO in absorption. The CO measurement established that reaction (3) produces CO in excited vibrational states. A computer fit of the experiments near 2000 K led to An additional measurement of NO via infrared absorption led to an estimate of the ratio k5/k6: with k5/k6 ? 103.36±0.27 at 2150 K. Mixtures of cyanogen and oxygen diluted in argon were shock heated to measure the rate constant of and the ratio k5/k6 by monitoring CN in absorption. We found near 2400 K: and The combined measurements of k5/k6 lead to k5/k6 ? 10?3.07 exp(+31,800/T) (±60%) for 2150 ≤ T ≤ 2400 K.  相似文献   

20.
H2S increases the thermal isomerization of butene-2 cis (Bc) to butene-1 (B1) and butene-2 trans (Bt) around 500°C. This effect is interpreted on the basis of a free radical mechanism in which buten-2-yl and thiyl free radicals are the main chain carriers. B1 formation is essentially explainedby the metathetical steps: whereas the free radical part of Bt formation results from the addition–elimination processes: . It is shown that the initiation step of pure Bc thermal reaction is essentially unimolecular: and that a new initiation step occurs in the presence of H2S: . The rate constant ratio has been evaluated: and the best values of k1 and k1', consistent with this work and with thermochemical data, are . From thermochemical data of the literature and an “intrinsic value” of E?3 ? 2 kcal/mol given by Benson, further values of rate constants may be proposed: is shown to be E4 ? 3.5 ± 2 kcal/mol, of the same order as the activation energy of the corresponding metathetical step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号