首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the Mechanism of the Thermal Decomposition of Ammonium and Ammin Chloro Complexes of Ruthenium, Rhodium, Palladium and Platinum The thermolysis of noble metal compounds was investigated by a combination of independent physical (DTA/TG, high-temperature Guinier-Simon-technique) and preparative methods, characterization of the educts, intermediats and products by Guinier X-ray patterns and IR spectroscopy:
  • (a) (NH4)2[PtCl6], (NH4)2[PtCl4], [Pt(NH3)4][PtCl4], [Pt(NH3)4]Cl2, and trans-[Pt(NH3)2Cl2];
  • (b) (NH4)2[PdCl4], [Pd(NH3)4]Cl2, trans-[Pd(NH3)2Cl2], and [Pd(NH3)4][PdCl4];
  • (c) (NH4)2[RhCl5(H2O)], (NH4)3[Rh2Cl9], K2[RhCl5(H2O)], and K2[RhCl5(NH3)];
  • (d) (NH4)2[RuCl5(NH3)] and (NH4)4[Ru2Cl10O]
. The most important step of the mechanism of the thermal decomposition is the ?internal”? redox reaction between the noble metal cation and the nitrogen atom of the ammine ligand.  相似文献   

2.
K[HCS2] was prepared by interaction of chloroform with K2S. Rb[HCS2] and Cs[HCS2] were formed by reaction of trimeric dithioformic acid with alcoholates (X-ray data see ?Inhaltsübersicht”?). The dithioformates T1[HCS2], In[HCS2]3, and M[HCS2]2 with M = Pb, Zn, Cd, Hg, and M[HCS2] with M = [(C6H5)4P], [(C6H5)4As], [(C2H5)4N], (C6H5)3Sn have been prepared. The prepared compounds are investigated by different methods.  相似文献   

3.
Summary Several new compounds of the type [R3Sn]3[Cr(NCS)6] and [R3Sn][Cr(NCS)4L2], where R = Ph or n-Bu and L = NH3, PhNH2 or CO(NH2)2, have been synthesized and characterized by analytical data, i.r. and electronic spectral studies. Conductance measurements indicate that the compounds are ionic.  相似文献   

4.
Zusammenfassung Die Verbindungen Thionol, Thionolin und Thionin sind als Indicatoren für visuelle Titrationen mit Titan(III) unter den in der Arbeit angegebenen Bedingungen geeignet. Die Ergebnisse der Titration von K2Cr2O7, FeCl3, AuCl3, NH4VO3, H2[PtCl6], K3[Fe(CN)6] und OsO4 sind angegeben.
Summary Conditions have been worked of for the application of thionol, thionoline, and thionine as indicators in visual titrations with titanium(III). Results of the determinations of K2Cr2O7, FeCl3, AuCl3, NH4VO3, H2[PtCl6], K3[Fe(CN)6] and OsO4 have been presented.
  相似文献   

5.
Preparation and Crystal Structure of (NH4)2[V(NH3)Cl5]. The Crystal Chemistry of the Compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2, and M2VXCl5 with M = K, NH4, Rb, Cs and X ? Cl, O (NH4)2[V(NH3)Cl5] crystallizes like [Rh(NH3)5Cl]Cl2 in the orthorhombic space group Pnma with Z = 4. The compounds are built up by isolated NH4+ or Cl? and complex MX5Y ions. The following distances have been observed: V? N: 213.8, V? Cl: 235.8–239.1, Rh? N: 207.1–208.5, Rh? Cl: 235.5 pm. Both structures differ from the K2PtCl6 type mainly in the ordering of the MX5Y polyhedra. The compounds M2VCl6 and M2VOCl5 with M = K, NH4, Rb, and Cs crystallize with exception of the orthorhombic K2VOCl5 in the K2PtCl6 type. The ordering of the MX5Y polyhedra in the compounds (NH4)2[V(NH3)Cl5], [Rh(NH3)5Cl]Cl2 and K2VOCl5 enables a closer packing.  相似文献   

6.
Preparation and Crystal Structure of Tetraphenylphosphonium Hexathiocyanatorhodate(III), [P(C6H5)4]3[Rh(SCN)6] By treatment of RhCl3 · n H2O with KSCN in water a mixture of the linkage isomers [Rh(NCS)n(SCN)6–n]3?, n = 0–2 is formed which is separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-ray structure determination on a single crystal of [P(C6H5)4]3[Rh(SCN)6] (monoclinic, space group C1c1, a = 13.620(5), b = 22.929(13), c = 22.899(9) Å, β = 98.55(3)°, Z = 4) confirms the coordination of all ligands via S with the middle Rh? S distance of 2.372 Å and Rh? S? C angles of 109°. The SCN groups are nearly linear with 175° and averaged bondlengths S? C 1.63 and C? N 1.14 Å. The crystal lattice is build up by layers of complex anions and voluminous cations with no specific interactions but which are closely connected by thiocyanate ligands and phenyl rings.  相似文献   

7.
Amidometallates of Lanthanum and Gadolinium and the Conversion of Lanthanum, Gadolinium, and Scandium with Ammonia By reaction of the metals with NsNH2 and NH3 in the hightemperature- autoclave Na3[La(NH2)6], Na3[Gd(NH2)6], and Na[Gd(NH2)4] were prepared, but not any compound of Sc. By corresponding experiments with NH4I only La(NH2)3, GdN, and ScH2 were obtained. Na3[La(NH2)6] and Na3[Gd(NH2)6] are isotypic with Na3[Y(KH2)6], Na[Gd(NH2)4] with Na[Yb((NH2)4]. The thermal behaviour of the prepared amides was characterized by DTA and tensimetry.  相似文献   

8.
The reaction of (C6H5)2PbJ2 (I) in liquid NH3 with KNH2 has been investigated. It results in the formation of K2[Pb(NH2)6] (II). As intermediates could be isolated: (C6H5)2PbJ2 · 3NH3 (III), (C6H5)2PbNH (V) and K2[(C6H5)2Pb(NH2)4] (VIII).  相似文献   

9.
Preparation, Redox Properties, and Structures of Mononuclear ?Simple”? Mono-, and Dinitrosyl Complexes of Molybdenum with Hydroxylamido(?1), Oximato, Halogeno, and Pseudohalogeno Ligands The compounds [(C6H5)4P]2[Mo(NO)(H2NO)(NCS)4] 1 , [(C6H5)4P]2 [Mo(NO)((C2H5)2-CNO)(NCS)4] 2 , [(C6H5)4P]2[Mo(NO)2(NCS)4] · CH3OH, 3 [(C6H5)4P]3[Mo(NO)(CN)5] · 2H2O 4 , Cs2[Mo(NO)Cl4(H2O)] 5 and Cs2[Mo(NO)Cl5] 6 were prepared and characterized by complete X-ray structure analysis. All complexes have a nearly linear MoNO moiety, whereas in the anions of 1 and 2 a pentagonal-bipyramidal, in 3 — 6 an octahedral coordination sphere of Mo is present. Complexes with {MoNO}n configuration (n = 4, 5, 6) can be converted into each other by remarkable redox-reactions. Some novel reactions of the hydroxylamido(?1)-ligand (formation of 2 and 3 ) are discussed very shortly.  相似文献   

10.
Cyanate Compounds and their Reactivity. XXI. Reactivity of Niobium(V) and Tantalum(V) Thiocyanates to N-Donators M2(NCS)10 reacts with ammonia or primary and secondary aliphatic amines to complexes of the types [M(NCS)(NH2)2NH]x, [M(NCS)3(NHR)2 H2NR], or [M(NCS)3(NR′2)2 HNR′2], with N-heterocyclic amines in a first step to [M(NCS)5L]-complexes and in a further step through a redox mechanism to [M(NCS)4L2] complexes. [M(NCS)5(CH3CN)] mCH3CN reacts with ammonia, or primary amines in acetonitrile over acetamidine and amidinolytic cleavage of M-NCS bonds to complexes of the type [M(NCS)a(NC(NHR″)CH3)b(CH3C(NH)NHR″)]x. The prepared compounds are characterized by analytical data, derivatographic measurements, and IR or visible absorption spectra (M = Nb, Ta; x = 2; R = n-C4H9; R′ = C2H5; L = pyridine or 4-methyl-pyridine; m = 0, 1, 2; a = 1 or 4; b = 4 or 1; R″ = H, n-C4H9).  相似文献   

11.
Preparation and Crystal Structure of (n-Bu4N)3[Ir(NCS)(SCN)5] The evaporated ethanolic extrakt of the reaction product of K3[IrCl6] and HNO3, refluxed with an aqueous KSCN solution yields a mixture of the linkage isomers [Ir(NCS)n(SCN)6?-n]3?, n = 0? 2, and small amounts of linkage isomeric chloropentarhodanoiridates(III), from which [Ir(NCS)(SCN)5]3? has been isolated by ion exchange chromatography on DEAE-cellulose. The X-Ray structure determination on a single crystal of (n-Bu4N)3[Ir(NCS)(SCN)5] (monoclinic, space group P 21/a, a = 17.513(5), b = 32.607(5), c = 23.661(5) Å, β = 94.757(5)°, Z = 8) confirms the existance of a heteroleptic hexakis(thiocyanato(N)-thiocyanato(S))iridate(III) with an Ir? N distance of 2.03 Å and Ir? S bond lengths between 2.29 and 2.38 Å. The SCN groups with angles between 166 and 175° are nearly linear with Ir? S? C angles from 99.9 to 109.4°. The Ir? N? C angles of the two crystallographic independent anions are 166 and 174°.  相似文献   

12.
The complex carbonates of iron(III) are shown to be anionic in nature. The solutions containing these complexes show a maximum absorbance at 460 nm. The complex carbonates of iron(III), viz., (i) K6[Fe2(OH)2(CO3)5] · H2O, — (ii) Na2[Fe3O2(OH)3(CO3)2], — (iii) K[Co(NH3)6]2[Fe3(OH)4(CO3)6], — (iv) K5[Co(NH3)6]3[Fe3(OH) 4(CO3)6]2, — (v) K[Co(NH3)6][Fe2(OH)4(CO3)3], and (vi) NH4[Co(NH3)6][Fe2(OH)4(CO3)3] are isolated and studied by thermogravimetry. The infrared spectra of these compounds are recorded and probable band assignments made. Besides, the reaction between KHCO3 and Fe(NO3)3 was studied through chemical and physicochemical methods.  相似文献   

13.
Preparation and Properties of the Alkali Hexaiodatogermanates(IV), M2[Ge(IO3)6] Germanium dioxide aquate and alkali nitrates react with iodic acid to yield alkali hexaiodatogermanates(IV), M2[Ge(IO3)6], (M = NH4, K, Rb, Cs). The unit-cell dimensions of the trigonal cell are for K2[Ge(JO3)6] a0 = 11.16 Å, c0 = 11.34 Å, z = 3. The compounds M[MIV(IO3)6] (MI = NH4, K, Rb, Cs, MIV = Ge, Sn, Pb, Ti, Zr, Mn) are isomorphous1).  相似文献   

14.
Sulphito Cobalt(III) Ammines. II. [CoSO3NCS(NH3)4] and [CoSO3SCN(NH3)4] The brown complex [CoSO3NCS(NH3)4] · 2 H2O formed from aqueous solutions contains N-bonded thiocyanate as concluded from his IR spectrum. After dehydration the red complex [CoSO3SCN(NH3)4] containing S-bonded thiocyanate has been formed. The conversion of the two isomers is favoured by the trans effect of the sulphito group.  相似文献   

15.
Synthesis and Structure of Ammine and Amido Complexes of Iridium The reaction of (NH4)2[IrCl6] with NH4Cl at 300 °C in a sealed glass ampoule yields the iridium(III) ammine complex (NH4)2[Ir(NH3)Cl5], which crystallizes isotypically with K2[Ir(NH3)Cl5] in the orthorhombic space group Pnma with Z = 4, and a = 1350.0(2); b = 1028.5(3); c = 689.6(2) pm. The reaction of (NH4)2[IrCl6] with NH3 at 300 °C, however, gives the already known [Ir(NH3)5Cl]Cl2 beside a small amount of [Ir(NH3)4Cl2]Cl2. In pure form [Ir(NH3)5Cl]Cl2 is obtained by ammonolysis of (NH4)2[Ir(NH3)Cl5] at 300 °C with NH3. [Ir(NH3)4Cl2]Cl2 crystallizes triclinic (P1, Z = 1, a = 660,2(3); b = 680,4(3); c = 711,1(2) pm; α = 103,85(2)°, β = 114,54(3)°, γ = 112,75(2)°). The structure contains Cl anions and [Ir(NH3)4Cl2]2+ cations with a trans position of the Cl atoms. Upon reaction of [Ir(NH3)5Cl]Cl2 with Cl2 one ammine ligand is eliminated yielding [Ir(NH3)4Cl2]Cl, which is transformed to orthorhombic [Ir(NH3)4(OH2)Cl]Cl2 (Pnma, Z = 4, a = 1335,1(3); b = 1047,9(2); c = 673,4(2) pm) by crystallization from water. In the octahedral complex [Ir(NH3)4(OH2)Cl]2+ the four ammine ligands have an equatorial position, whereas the Cl atom and the aqua ligand are arranged axial. Oxidation of (NH4)2[Ir(NH3)Cl5] with Cl2 at 330 °C affords the tetragonal IrIV complex (NH4)[Ir(NH3)Cl5] (P4nc, Z = 2, a = 702.68(5); c = 912.89(9) pm). Its structure was determined using the powder diagram. Oxidation of (NH4)2[Ir(NH3)Cl5] with Br2 in water, on the other hand, gives (NH4)2[IrBr6] crystallizing in the K2[PtCl6] type. Oxidation of (PPh4)2[Ir(NH3)Cl5] with PhI(OAc)2 in CH2Cl2 affords the IrV amido complex (PPh4)[Ir(NH2)Cl5].  相似文献   

16.
Rubidium Hexaamidolanthanate and -neodymate, Rb3[La(NH2)6] and Rb3[Nd(NH2)6]; Compounds. Structurally Related to K3[Cr(OH)6] and K4CdCl6 Colourless Rb3[La(NH2)6] (a = 12.298(4) Å, c = 13.759(2) Å, N = 6, R3 c) and pale blue Rb3[Nd(NH2)6] (a = 12.199(6) Å, c = 13.626(4) Å, N = 6, R32) have been prepared by the reaction of the corresponding metals (Rb: La resp. Nd = 3:1) with NH3(P(NH3) = 4–4.5 kbar) at 300°C. Single crystal x-ray methods gave their structures. It is shown by space group relations that these compounds are structurally related to one another and to further ternary amides as well as to K3[Cr(OH)6] and K4CdCl6.  相似文献   

17.
[(C6H5)4P]2[Mo(NO)(ONC(CH3)2)(NCS)4], a Complex Having a Side-on Coordinated Oximato Ligand; Crystal and Molecular Structure The structure of the title compound 1 was determined from single-crystal X-ray data 1 crystallizes in the triclinic space group P1 . Mo has a pentagonal-bipyramidal coordination sphere. The oximato-ligand is side-on bonded in the equatorial plane. (Mo? N and Mo? O bond lengths: 2.086(8) and 2.090(6) Å, respectively) (R = 0.082; Rw = 0,077).  相似文献   

18.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ).  相似文献   

19.
Crystal Structure of Tetraphenylphosphonium Monothiocyanatohydro-closo-Decaborate, [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN The X-ray structure determination of [P(C6H5)4]2[2-(SCN)B10H9] · CH3CN (monoclinic, space group P21/n, a = 10.6040(10), b = 13.8880(9), c = 33.888(3) Å, β = 94.095(8)°, Z = 4) reveals the S coordination of the SCN substituent with a B? S distance of 1.913(6) Å and a B? S? C angle of 105.3(3)°. The SCN group is nearly linear (178.2(7)°).  相似文献   

20.
《Polyhedron》1999,18(26):3533-3544
[Tris(1,3-dithiole-2-thione-4,5-dithiolato)stannate]2−, [Q]2[Sn(C3S5)3], [tris(1,3-dithiole-2-one-4,5-dithiolato)stannate]2−, [Q]2[Sn(C3S4O)3], and [tris(1,3-dithiole-2-thione-4,5-diselenolato)stannate]2− [Q]2[Sn(C3S3Se2)3], complexes, have been synthesised and characterised. Crystal structure determinations of [Q]2[Sn(C3S5)3] (Q=1,4-dimethylpyridinium, monoclinic and orthorhombic forms; NMe4, NEt4, and PPh4) and [NEt4]2[Sn(C3S4O)3] revealed variations in the overall dianion structures. The geometry about tin in each case is essentially octahedral with the chelate bite angles in the range 80.7(5)–87.45(4)°: the range of Sn–S distances is 2.5207(18)–2.571(17) Å. A statistical analysis, carried out on the crystal structure data for the six complexes, indicated that the most critical factors in controlling the overall shape of the dianion were the distances of the Sn atom from the dithiolate ligand planes [Sn–OOP]. Interanionic S⋯S interactions, within the sum of the van der Waals’ radii for two S atoms, are affected by the size of the cation, Q; the secondary connectivity is 3-dimensional for the smallest cations, Q=1,4-dimethylpyridinium and NMe4, in chains for the somewhat larger cation, NEt4 and is absent for the still larger, PPh4 cation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号