首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the aid of Maple symbolic computation and Lie group method, PKPp equation is reduced to some (1 + 1)-dimensional partial differential equations, in which there are linear PDE with constant coefficients, nonlinear PDE with constant coefficients, and nonlinear PDE with variable coefficients. Using the separation of variables, homoclinic test technique and auxiliary equation methods, we obtain new abundant exact non-traveling solution with arbitrary functions for the PKPp.  相似文献   

2.
With the aid of Maple symbolic computation and Lie group method, PKPp equation is reduced to some (1+1)-dimensional partial differential equations, in which there are linear PDE with constant coefficients, nonlinear PDE with constant coefficients, and nonlinear PDE with variable coefficients. Using the separation of variables, homoclinic test technique and auxiliary equation methods, we obtain new abundant exact non-traveling solutions with arbitrary functions for the PKPp.  相似文献   

3.
本文在[3],[4]工作的基础上,利用变数算符的思想以及Mikusinski算符域中移动算符和变系数移动算符级数的有关结果,解决了一般的三阶线性变系数差分方程的求解问题,并且绘出了一些特殊的三阶线性变系数差分方程的更好的解式;此外,还试图为实现更高阶线性变系数差分方程的求解提供思想方法。  相似文献   

4.
We present conditions for the existence of periodic solutions of linear difference equations with periodic coefficients in spaces of bounded number sequences. In the case where the generating linear equation has a unique periodic solution, we indicate sufficient conditions for the existence of a periodic solution of a quasilinear difference equation.  相似文献   

5.
This paper presents a numerical method for the approximate solution of mth-order linear delay difference equations with variable coefficients under the mixed conditions in terms of Laguerre polynomials. The aim of this article is to present an efficient numerical procedure for solving mth-order linear delay difference equations with variable coefficients. Our method depends mainly on a Laguerre series expansion approach. This method transforms linear delay difference equations and the given conditions into matrix equation which corresponds to a system of linear algebraic equation. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer algebraic system Maple.  相似文献   

6.
This paper introduces an approximate solution for Liouville‐Caputo variable order fractional differential equations with order 0 < α(t) ≤ 1 . The solution is adapted using a family of fractional‐order Chebyshev functions with unknown coefficients. These coefficients have been obtained by using an optimization approach based on minimax technique and the least pth optimization function. Several linear and nonlinear fractional‐order differential equations are discussed using the proposed technique for fixed and variable order fractional‐order derivatives. Moreover, the response of RC charging circuit with variable order fractional capacitor is studied for different cases. Several comparisons with related published techniques have been added to illustrate the accuracy of the proposed approach.  相似文献   

7.
Nonlinear corrections to some classical solutions of the linear diffusion equation in cylindrical coordinates are studied within quadratic approximation. When cylindrical coordinates are used, we try to find a nonlinear correction using quadratic polynomials of Bessel functions whose coefficients are Laurent polynomials of radius. This usual perturbation technique inevitably leads to a series of overdetermined systems of linear algebraic equations for the unknown coefficients (in contrast with the Cartesian coordinates). Using a computer algebra system, we show that all these overdetermined systems become compatible if we formally add one function on radius W(r). Solutions can be constructed as linear combinations of these quadratic polynomials of the Bessel functions and the functions W(r) and W′(r). This gives a series of solutions to the nonlinear diffusion equation; these are found with the same accuracy as the equation is derived. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 13, No. 1, pp. 235–245, 2007.  相似文献   

8.
给出了求具有三个任意函数的变系数非线性演化方程的类孤波解的截断展开方法.这种方法的关键是首先把形式解设为几个待定函数的截断展开形式,从而可将变系数非线性演化方程转化为一组待定函数的代数方程,然后进一步给出容易积分的待定函数的常微分方程组,从而构造出相应的类孤波解.  相似文献   

9.
We study the modulation of nonlinear waves in fluid-filled prestressed tapered tubes. For this, we obtain the nonlinear dynamical equations of motion of a prestressed tapered tube filled with an incompressible inviscid fluid. Assuming that the tapering angle is small and using the reductive perturbation method, we study the amplitude modulation of nonlinear waves and obtain the nonlinear Schrödinger equation with variable coefficients as the evolution equation. A traveling-wave type of solution of such a nonlinear equation with variable coefficients is obtained, and we observe that in contrast to the case of a constant tube radius, the speed of the wave is variable. Namely, the wave speed increases with distance for narrowing tubes and decreases for expanding tubes.  相似文献   

10.
Mirjana Stojanovic 《PAMM》2013,13(1):367-368
Fractional differential equations have received increasing attention during recent years since the behavior of many physical systems can be properly described using the fractional order system theory. By fractional analog for Duhamel principle we give the existence-uniqueness result for linear and nonlinear time fractional evolution equations with singularities in corresponding norm in extended Colombeau algebra of generalized functions. In order to find the explicit solutions we use integral representation of the solution obtained via Laplace and Fourier transforms in succession and their inverses. We deal with some nonlinear models with singularities appearing in viscoelasticity and in anomalous processes, extending the results in viscoelasticity, continuum random walk, seismology, continuum mechanics and many other branches of life and science. The main task is finding existence-uniqueness results like in the case of evolution equations with entire derivatives. By examining the fractional evolution equations it turns out that they lead to till now known results from the evolution equations with entire derivatives in limiting case. They give more, behavior of the solution when order of derivatives are inside the intervals of entire points. In this way we can follow the influence of the operators generated by entire derivative in many fractional time evolution PDEs especially with singular initial data, and non-Lipschitz's nonlinear term. Apart from evolution equations we prove also an existence-uniqueness result for an initial value problem with singularities for linear and nonlinear fractional elliptic equation of Helmholtz type and fractional order α, where 1 < Re(α) ≤ 2, with respect to the one variable from R +. As a framework, we employ also Colombeau algebra of generalized functions containing fractional derivatives and operations among them in order to deal with the fractional equations with singularities. We apply the same techniques to the fractional Laplace and Poisson equation linear and nonlinear ones. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
This paper is concerned with the problem of solving linear difference equations of ordern with constant coefficients and with given initial conditions in which the variable runs not only through the integers but over . The main idea is the introduction of a suitable commutative ring of functions with discrete convolution as multiplication rule which works, although it is not a field. The existence of inverses is studied and, after the introduction of suitable functions, the problem is reduced by means of a Laplace-like relation to an algebraic equation. Examples of application are given. Finally some remarks make the connection with the Operational Calculus of Mikusinski and with the Operational Calculus of Fenyö. The advantages of this method lie in the fact that it is applicable to functions others than the step functions, in its simplicity from the theoretical point of view, in its usefulness even when computation is required and in its formal similarity to the classical treatment of linear differential equations with constant coefficients.  相似文献   

12.
13.
We study the recursive formulation of the law of superposition of multiple collinear velocities. We start with the non-linear equation, transform it into two linear coupled difference equations with variable cofficients, and then decouple these latter equations. The coupled difference equations are solved by three different, but interrelated, methods: (i) via the graph theoretic discrete path approach, (ii) by using the general closed form solution of two coupled first order difference equations with variable coefficients, and (iii) in terms of the symmetric functions via the pochhammers of 2 × 2 non-autonomous matrices. The solutions of the decoupled equations are factorial polynomials.  相似文献   

14.
高杨  王贺元 《高等数学研究》2014,(1):77+82-77,82
介绍如何通过变换把二阶变系数线性微分方程转化为一阶非线性微分方程,进而利用待定系数法对其求解,并对二阶变系数线性微分方程与一阶常系数非线性微分方程的内在的关系进行讨论.  相似文献   

15.
In this paper, a spectral collocation approximation is proposed for neutral and nonlinear weakly singular Volterra integro‐differential equations (VIDEs) with non‐smooth solutions. We use some suitable variable transformations to change the original equation into a new equation, so that the solution of the resulting equation possesses better regularity, and the the Jacobi orthogonal polynomial theory can be applied conveniently. Under reasonable assumptions on the nonlinearity, we carry out a rigorous error analysis in L norm and weighted L2 norm. To perform the numerical simulations, some test examples (linear and nonlinear) are considered with nonsmooth solutions, and numerical results are presented. Further more, the comparative study of the proposed methods with some existing numerical methods is provided.  相似文献   

16.
二阶非线性中立型时滞差分方程的振动性   总被引:3,自引:0,他引:3  
研究了一类具有多个变滞量的变系数的二阶非线性中立型时滞差分方程的振动性,得到了该类方程振动及其解的一阶差分振动的充分条件,推广了现有文献中的某些结果.  相似文献   

17.
The method presented in [4] for the solution of linear difference equations in a single variable is extended to some equations in two variables. Every linear combination of a given functionf and of its partial differences can be obtained by the discrete convolution product off by a suitable functionl (which depends on the considered linear combination), and we want to solve in a convolutional form difference equations in the whole plane. However, the convolution of two functions may not be possible if their supports contain half straight lines with opposite directions. To avoid this, we take four sets of functions corresponding to the quadrants such thatl belong to every set, every set endowed with the convolution and with the usual addition is a ring, and there is an inverse ofl in each of the four rings. This is attained by taking, for each ring, a set of functions whose supports belong to suitable cones. After choosing such rings, a very natural initial-value first-order Cauchy Problem (in partial differences) is reduced to a convolutional form. This is done either by a direct method or by introducing the forward difference functions i f(i=1,2) in a general way depending on the shape of the support off so that Laplace-like formulas with initial and final values) hold. Applications to difference equations in the whole plane and to partial differential problems are made.  相似文献   

18.
An extended mapping method with a computerized symbolic computation is used for constructing a new exact travelling wave solutions for nonlinear evolution equations arising in physics, namely, generalized Zakharov Kuznetsov equation with variable coefficients. As a result, many exact travelling wave solutions are obtained which include new periodic wave solution, trigonometric function solutions and rational solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations with variable coefficients arising in mathematical physics. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

19.
利用高阶变系数之间的关系,通过适当的线性变换,得到了五阶变系数线性非齐次方程常系数化的条件,给出了一类高阶变系数线性非齐次微分方程的新解法.  相似文献   

20.
In this paper, we investigate the complex oscillation problems of meromorphic solutions to some linear difference equations with meromorphic coefficients, and obtain some results about the relationships between the exponent of convergence of zeros, poles and the order of growth of meromorphic solutions to complex linear difference equations. We also study the existence of solution of certain types of nonlinear differential-difference equations, and partially answer a conjecture concerning the above problem posed by Yang and Laine (C.C. Yang and I. Laine, On analogies between nonlinear difference and differential equations, Proc. Japan Acad. Ser. A Math. Sci. 86(1) (2010), pp. 10–14).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号