首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Profile measurements of the H2/O2 reaction have been obtained using a variable pressure flow reactor over pressure and temperature ranges of 0.3–15.7 atm and 850–1040 K, respectively. These data span the explosion limit behavior of the system and place significant emphasis on HO2 and H2O2 kinetics. The explosion limits of dilute H2/O2/N2 mixtures extend to higher pressures and temperatures than those previously observed for undiluted H2/O2 mixtures. In addition, the explosion limit data exhibit a marked transition to an extended second limit which runs parallel to the second limit criteria calculated by assuming HO2 formation to be terminating. The experimental data and modeling results show that the extended second limit remains an important boundary in H2/O2 kinetics. Near this limit, small increases in pressure can result in more than a two order of magnitude reduction in reaction rate. At conditions above the extended second limit, the reaction is characterized by an overall activation energy much higher than in the chain explosive regime. The overall data set, consisting primarily of experimentally measured profiles of H2, O2, H2O, and temperature, further expand the data base used for comprehensive mechanism development for the H2/O2 and CO/H2O/O2 systems. Several rate constants recommended in an earlier reaction mechanism have been modified using recently published rate constant data for H + O2 (+ N2) = HO2 (+ N2), HO2 + OH = H2O + O2, and HO2 + HO2 = H2O2 + O2. When these new rate constants are incorporated into the reaction mechanism, model predictions are in very good agreement with the experimental data. ©1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 113–125, 1999  相似文献   

2.
Electron pulse radiolysis at ?298°K of 2 atm H2 containing 5 torr O2 produces HO2 free radical whose disappearance by reaction (1), HO2 + HO2 →H2O2 + O2, is monitored by kinetic spectrophotometry at 230.5 nm. Using a literature value for the HO2 absorption cross section, the values k1 = 2.5×10?12 cm3/molec·sec, which is in reasonable agreement with two earlier studies, and G(H) G(HO2) ?13 are obtained. In the presence of small amounts of added H2O or NH3, the observed second-order decay rate of the HO2 signal is found to increase by up to a factor of ?2.5. A proposed kinetic model quantitatively explains these data in terms of the formation of previously unpostulated 1:1 complexes, HO2 + H2O ? HO2·H2O (4a) and HO2 + NH3? HO2·NH3 (4b), which are more reactive than uncomplexed HO2 toward a second uncomplexed HO2 radical. The following equilibrium constants, which agree with independent theoretical calculations on these complexes, are derived from the data: 2×10?20?K4a?6.3 × 10?19 cm3/molec at 295°K and K4b = 3.4 × 10?18 cm3/molec at 298°K. Several deuterium isotope effects are also reported, including kH/kD = 2.8 for reaction (1). The atmospheric significance of these results is pointed out.  相似文献   

3.
The rate of the reaction was determined in an isothermal discharge flow reactor with a combined ESR–LMR detection under pseudo-first-order conditions in HO2. The rate constant was identical in experiments with two different HO2 sources: F + H2O2 and H + O2 + M. The absolute rate constant at T = 293 K was measured as In the range 2 ≤ p mbar ≤ 17 no pressure dependence for k1 was found.  相似文献   

4.
A detailed chemical kinetic model for oxidation of acetylene at intermediate temperatures and high pressure has been developed and evaluated experimentally. The rate coefficients for the reactions of C2H2 with HO2 and O2 were investigated, based on the recent analysis of the potential energy diagram for C2H3 + O2 by Goldsmith et al. and on new ab initio calculations, respectively. The C2H2 + HO2 reaction involves nine pressure‐ and temperature‐dependent product channels, with formation of triplet CHCHO being dominant under most conditions. The barrier to reaction for C2H2 + O2 was found to be more than 50 kcal mol?1 and predictions of the initiation temperature were not sensitive to this reaction. Experiments were conducted with C2H2/O2 mixtures highly diluted in N2 in a high‐pressure flow reactor at 600–900 K and 60 bar, varying the reaction stoichiometry from very lean to fuel‐rich conditions. Model predictions were generally in satisfactory agreement with the experimental data. Under the investigated conditions, the oxidation pathways for C2H2 are more complex than those prevailing at higher temperatures and lower pressures. Acetylene is mostly consumed by recombination with H to form vinyl (reducing conditions) or with OH to form a CHCHOH adduct (stoichiometric to lean conditions). Both C2H3 and CHCHOH then react primarily with O2. The CHCHOH + O2 reaction leads to formation of significant amounts of glyoxal (OCHCHO) and formic acid (HOCHO), and the oxidation chemistry of these intermediates is important for the overall reaction.  相似文献   

5.
The rate constant for the reaction (1), Cl + HO2 → HCl + O2, was measured using molecular modulation spectrometry to investigate HO2 radical kinetics in the modulated photolysis of Cl2? ;H2? O2 mixtures at 760 torr pressure. HO2 was monitored directly in absorption at 220 nm, and k1 was determined from computer simulations of the observed kinetic behavior of HO2, using a simple chemical model. The results gave where k4 is the rate constant for the reaction of Cl with H2. A consensus value of k4 gave k1 = 6.9 × 10?11 cm3/molecule sec, independent of temperature in the range of 274–338 K with an overall uncertainty of ±50%. The relative importance of reaction (1) for the conversion of Cl to HCl in the stratosphere is discussed briefly.  相似文献   

6.
The generation of metastable O2(1Σg+) and O2(1Δg) in the H + O2 system of reactions was studied by the flow discharge chemiluminescence detection method. In addition to the O2(1Σg+) and O2(1Δg) emissions, strong OH(v = 2) → OH(v = 0), OH(v = 3) → OH(v = 1), HO2(2A000) → HO2(2A000), HO2(2A001) → HO2(2A000), and H O2(2A200) → HO2(2A000) emissions were detected in the H + O2 system. The rate constants for the quenching of O2(1Σg+) by H and H2 were determined to be (5.1 ± 1.4) × 10?13 and (7.1 ± 0.1) × 10?13 cm3 s?1, respectively. An upper limit for the branching ratio to produce O2(1Σg+) by the H + HO2 reaction was calculated to be 2.1%. The contributions from other reactions producing singlet oxygen were investigated.  相似文献   

7.
A kinetic study has been made of the 3130-Å photolysis of CH2O (8 torr) in O2-containing mixtures (0.02–8 torr) and in the presence of added CO2 (0–300 torr) at 25°C. Quantum yields of formation of H2, CO, and CO2 and the loss of O2 were measured. Φ and ΦCO were much above unity. In an explanation of these unexpected results, a new H-atom-forming chain mechanism was postulated involving HO2 and HO addition to CH2O: CH2O + hν → H + HCO (1) H + CH2O → H2 + HCO (3) H + O2 + M → HO2 + M (6) HCO + O2 → HO2 + CO (8) HO2 + CH2O → (HO2CH2O) → HO + HCO2H (15) HO + CH2O → H2O + HCO? (16); HCO? → H + CO (19) HO + CH2O → H2O + HCO (17) and HO + CH2O → HCO2H + H (18). When the results are rationalized in terms of this mechanism, the data suggest k16 ? k17 and k16/k18 ? 0.5. The data require that a reassessment of the relative rates of reactions (7) and (8) be made, since in the previous work HCO2H formation was used as a monitor of the rate of reaction (7) HCO + O2 + M → HCOO2 + M (7). The present data from experiments at P = 8 torr and P = 1–4 torr give k7[M]/(k7[M] + k8) ≥ 0.049 ± 0.017. These data coupled with the k8 estimates of Washida and coworkers give k7 ≥ (4.4 ± 1.6) × 1011 l2/mol2·sec for M = CH2O. The reaction sequence proposed here is consistent with the observed deterimental effect of O2 addition on the laser-induced isotope enrichment in HDCO. In additional studies of CH2O-O2-isobutene mixtures it was found that Φ was equal to ?2 as estimated in O2-free CH2O-isobutene mixtures. These results suggest that the increase in CO (ν = 1) product observed with O2 addition in CH2O photolysis does not result from perturbations in the fragmentation pattern of the excited CH2O, but it is likely that it originates in the occurrence of the exothermic reaction HCO + O2 → HO2 + CO (ν = 1).  相似文献   

8.
Using the technique of flash photolysis-resonance fluorescence, absolute rate constants have been measured for the reaction H + O2 + M → HO2+M over a temperature range of 220–360°K. Over this temperature range, the data could be fit to an Arrhenius expression of the following form: The units for kAr are cm6/mole-s. At 300°K the relative efficiencies for the third-body gases Ar:He:H2:N2:CH4 were found to be 1.0:0.93:3.0:2.8:22. Wide variations in the photoflash intensity at several temperatures demonstrated that the reported rate constants were measured in the absence of other complex chemical processes.  相似文献   

9.
The rate coefficient for the reaction OH + HO2 =H2O + O2 has been determined from measurements of the steady-state absorption of HO2 at 210 nm, in low-frequency square-wave modulated photolysis of O3 + H2O mixtures. The value obtained was (9.9 ± 2.5) × 10?11 cm3 molecule?1 s?1 at 308 K and 1 atm pressure.  相似文献   

10.
Time-resolved measurements of the oxygen atom concentration during shock-wave initiated combustion of low-density (25 ≤ p ≤ 175 kPa) H2? O2? CO? CO2? Ar mixtures have been made by monitoring CO + O → CO2 + hv (3 to 4 eV) emission intensity, calibrated against partial equilibrium conditions attained promptly at H2:O2 = 1. Significant transient excursions (“spikes”) of [O] above constant-mole-number partial-equilibrium levels were found from 1400 to 2000°K for initial H2:O2 ratios of 16 and 10 and below ± 1780°K for H2:O2 = 6; they did not occur in this range for H2:O2 ± 4. Numerical treatment of the H2? O2? CO ignition mechanism for our conditions showed [O] to follow a steady-state trajectory governed by large production and consumption rates from the reactions with a pronounced maximum in the production term ka[H][O2]. The measured spike concentration data determine kb/ka = 3.6 ± 20%, independent of temperature over 1400 ≤ T ≤ 1900°K, which with well-established ka data yields This result reinforces the higher of several recent combustion-temperature determinations, and its correlation with results below 1000°K produces a distinctly concave upward Arrhenius plot which is closely matched by BEBO transition state calculations.  相似文献   

11.
Flow reactor experiments were performed over wide ranges of pressure (0.5–14.0 atm) and temperature (750–1100 K) to study H2/O2 and CO/H2O/O2 kinetics in the presence of trace quantities of NO and NO2. The promoting and inhibiting effects of NO reported previously at near atmospheric pressures extend throughout the range of pressures explored in the present study. At conditions where the recombination reaction H + O2 (+M) = HO2 (+M) is favored over the competing branching reaction, low concentrations of NO promote H2 and CO oxidation by converting HO2 to OH. In high concentrations, NO can also inhibit oxidative processes by catalyzing the recombination of radicals. The experimental data show that the overall effects of NO addition on fuel consumption and conversion of NO to NO2 depend strongly on pressure and stoichiometry. The addition of NO2 was also found to promote H2 and CO oxidation but only at conditions where the reacting mixture first promoted the conversion of NO2 to NO. Experimentally measured profiles of H2, CO, CO2, NO, NO2, O2, H2O, and temperature were used to constrain the development of a detailed kinetic mechanism consistent with the previously studied H2/O2, CO/H2O/O2, H2/NO2, and CO/H2O/N2O systems. Model predictions generated using the reaction mechanism presented here are in good agreement with the experimental data over the entire range of conditions explored. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 705–724, 1999  相似文献   

12.
A mechanism for the formation in a chain of H2, CO, and HCOOH in the photooxidation of formaldehyde is proposed. This mechanism is initiated by the addition of HO2 to formaldehyde. Hydrogen atoms are produced by the thermal dissociation of the HOCH2O radical: HOCH2O → H + HCOOH; ΔH = + 3.2 kcal/mol [5]. Photolysis of CH2O? O2? NO mixtures and product analysis were carried out in conjunction with kinetic simulation yielding an estimate for the activation energy of the dissociation reaction : E5 = 14.9 ± 1.0 kcal/mol. Previous observations of this chain process are considered in view of this mechanism.  相似文献   

13.
The absorption spectra of H2O2 and of HO2 radicals have been investigated in shock waves at 1950 ? λ ? 2900 Å and temperatures of 650 and 1100 K. By comparison with room temperature experiments, information on the nature of electronic transitions involved may be obtained.  相似文献   

14.
This paper presents results from lean CO/H2/O2/NOx oxidation experiments conducted at 20–100 bar and 600–900 K. The experiments were carried out in a new high‐pressure laminar flow reactor designed to conduct well‐defined experimental investigations of homogeneous gas phase chemistry at pressures and temperatures up to 100 bar and 925 K. The results have been interpreted in terms of an updated detailed chemical kinetic model, designed to operate also at high pressures. The model, describing H2/O2, CO/CO2, and NOx chemistry, is developed from a critical review of data for individual elementary reactions, with supplementary rate constants determined from ab initio CBS‐QB3 calculations. New or updated rate constants are proposed for important reactions, including OH + HO2 ? H2O + O2, CO + OH ? [HOCO] ? CO2 + H, HOCO + OH ? CO + H2O2, NO2 + H2 ? HNO2 + H, NO2 + HO2 ? HONO/HNO2 + O2, and HNO2(+M) ? HONO(+M). Further validation of the model performance is obtained through comparisons with flow reactor experiments from the literature on the chemical systems H2/O2, H2/O2/NO2, and CO/H2O/O2 at 780–1100 K and 1–10 bar. Moreover, introduction of the reaction CO + H2O2 → HOCO + OH into the model yields an improved prediction, but no final resolution, to the recently debated syngas ignition delay problem compared to previous kinetic models. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 454–480, 2008  相似文献   

15.
A discharge-flow apparatus with resonance fluorescence and chemiluminescence detection has been used to monitor O2(b 1σ) production from several reactions of the HO2 radical at 300 K and 1-torr total pressure. O2(b), HO2, and OH were observed when F atoms were added to H2O2 in the gas phase. Signal strengths of O2(b) were proportional to initial concentrations of H2O2 and HO2. These observations were analyzed by using a simple three step mechanism and a more complete computer simulation with 22 reaction steps. The results indicate that the F + HO2 reaction yields O2(b) with an efficiency of (3.6 ± 1.4) × 10?3. By monitoring [O2(b)] and [HO2] upon addition of an excess second reactant to HO2, O2(b) yields from the reactions of HO2 with O, Cl, D, H, and OH were found to be <1 × 10?2, <5 × 10?4, <2 × 10?3, <8 × 10?3, and <1 × 10?3, respectively. Yields of O2(b) from the HO2 ± HO2 reaction were found to be less than 3 × 10?2.  相似文献   

16.
A direct kinetics study of the temperature dependence of the CH2O branching channel for the CH3O2 + HO2 reaction has been performed using the turbulent flow technique with high‐pressure chemical ionization mass spectrometry for the detection of reactants and products. The temperature dependence of the CH2O‐producing channel rate constant was investigated between 298 and 218 K at a pressure of 100 Torr, and the data were fitted to the following Arrhenius expression: 1.6 × 10?15 × exp[(1730 ± 130)/T] cm3 molecule?1 s?1. Using the Arrhenius expression for the overall rate of the CH3O2 + HO2 reaction and this result, the 298 K branching ratio for the CH2O producing channel is measured to be 0.11, and the branching ratio is calculated to increase to a value of 0.31 at 218 K, the lowest temperature accessed in this study. The results are compared to the analogous CH3O2 + CH3O2 reaction and the potential atmospheric ramifications of significant CH2O production from the CH3O2 + HO2 reaction are discussed. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 363–376, 2001  相似文献   

17.
The temperature dependence of the rate constant for the reaction HO2 + HO2 → H2O2 + O2 (2k1) has been determined using flash photolysis techniques, over the temperature range 298–510 K, in a nitrogen diluent at a total pressure of 700 Torr. The overall second order state constant is given by k1 = (4.14 ± 1.15) × 10?13 exp[(630 ± 115)/T] cm3 molecule?1 s?1, where the quoted errors refer to one standard deviation. This result is compared with previous findings and the negative activation energy is shown to be consistent with the observation that the rate constant is pressure dependent at 700 Torr.  相似文献   

18.
The kinetics of the slow oxidation of CO in the presence of H2 have been studied above the second explosion limit for the mixture 2CO + O2 + X% H2 at the temperature range of 530–570°C, pressures from 300 to 530 torr, and hydrogen contents of 1.1, 2.8, and 5.7%. The second explosion limit has been experimentally determined for the mixture of 2CO + O2 containing 1.0, 3.0, and 5.7% H2. On the basis of the oxidation scheme of CO in the presence of H2, which includes the accepted mechanism of oxidation of hydrogen supplemented by the reactions in which CO takes part, the second explosion limit and the profiles of the slow reaction are calculated by computer methods. The agreement found between experimental and calculated values allows one to conclude that the scheme under consideration rather completely described the slow reaction above the second limit and the occurrence of the second explosion limit in the mixture CO–O2–H2. The rate constant for the reaction HO2 + CO → OH + CO2 was calculated from the experimental data and was found to agree with previous determinations.  相似文献   

19.
The reaction of O2(1Δg) with HO2(X?) was studied in an isothermal flow reactor in the pressure range 7?p? 10.7 mbar at temperatures between 299?T? 423 K. H-atom production was observed in the reaction O2(1Δg) + HO22A′) - H(2S)+ 2O2 (3Σg?). The rate of this reaction (k1) is estimated to be k1 = (1 ± 0.5) × 1014 CM3 Mol?1 s?1. The implications of this reaction to recent determinations of the rate of the reaction H + O2(1Δg) are discussed.  相似文献   

20.
We report results of a flash photolysis study of the UV, spectra of HO2 and CH3O2 radicals, obtained by using a calibration technique based on the reaction Cl+NO→NOCl. We also report preliminary results from our study of the kinetics of the reaction CH3O2+HO2→products at room temperature and near atmospheric pressure. Our results are consistent with the only previous direct determination of the rate constant of the second reaction: k1 = (6.4 ± 1.0) × 10−12cm3 molecule s−1. From the same study we derive rate constants for the self-reaction of HO2 and CH3O2 radicals, which agree with recommended values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号