首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The condensation of 4-acetamido-3-cyanopyrazolo[3,4-d]pyrimidine ( 5 ) with crystalline 2,3,5-tri-O-acetyl-β- D -ribofuranosyl chloride ( 6 ) has furnished a good yield of nucleoside material ( 7 ) which on treatment with sodium methoxide in methanol provided a high yield of nucleoside which was subsequently established as methyl 4-amino-1-(β- D -ribofuranosyl)pyrazolo[3,4-d]-pyrimidine-3-formimidate monohydrate ( 11 ). The formimidate function of 11 was found to be highly reactive and 11 was readily converted into the corresponding carhoxamidine ( 8 ), carboxamidoxime ( 14 ) and carboxamidrazone ( 15 ) when treated with the appropriate nucleophiles. Treatment of the imidate ( 11 ) with sodium hydrogen sulfide gave a high yield of the thiocarboxamide ( 12 ) which was then readily converted into 4-amino-3-cyano-1-(β- D -ribofuranosyl)pyrazolo[3,4-d]pyrimidine ( 16 ). Aqueous base transformed 11 into 4-amino-1-(β- D -ribofuranosyl)-pyrazolo[3,4-d]pyrimidine-3-carboxamide ( 10 ) while more vigorous basic hydrolysis provided the corresponding carboxylic acid ( 9 ) in nearly quantitative yield. Decarboxylation of 9 proceeded smoothly in hot sulfolane to provide the known 4-amino-1-(β- D -ribofuranosyl)pyrazolo[3,4-d]pyrimidine ( 13 ) in 68% yield which unequivocally established the site of ribosylation and anomeric configuration for all nucleosides reported in this investigation.  相似文献   

2.
The synthesis of 2-chloro-1-(β-D -ribofuranosyl)-5,6-dimethylbenzimidazole (3b) has been accomplished by a condensation of 1-trimethylsilyl-2-chloro-5,6-dimethylbenzimidazole (1) with 2,3,5-tri-O-acetyl-D -ribofuranosyl bromide (2) followed by subsequent deacetylation. Nucleophilic displacement of the 2-chloro group from 3b has furnished several interesting 2-substituted-1-(β-D -ribofuranosyl)-5,6-dimethylbenzimidazoles. 1-(β-D -Ribofuranosyl)-5,6-dimethylbenzimidazole (5) and 1-(β-D -ribofuranosyl)-5,6-dimethylbenzimidazole-2-thione (4) were prepared from 3b. Alkylation of 4 furnished certain 2-alkylthio-1-(β-D -ribofuranosyl)-5,6-dirnethylbenzimidazoles and oxidation of 4 with alkaline hydrogen peroxide produced 1-(β-D -ribofuranosyl)-5,6-dimethylbenzimidazole-2-one D The assignment of anomeric configuration for all nucleosides reported is discussed.  相似文献   

3.
Condensation of 3,4-dichloro-6-[(trimethylsilyl)oxy] pyridazine ( 3 ) with 1-O-acetyl-2,3,5-tri-O-benzoyl-β- D -ribofuranose ( 4 ), by the stannic chloride catalyzed procedure, has furnished 3,4-dichloro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl) pyridazin-6-one ( 5 ). Nucleophilic displacement of the chloro groups and removal of the benzoyl blocking groups from 5 has furnished 3-chloro-4-methoxy-, 3,4-dimethoxy-, 4-amino-3-chloro-, 3-chloro-4-methylamino-, 3-chloro-4-hydroxy-, and 4-hydroxy-3-methoxy-1-β- D -ribofuranosylpyridazin-6-one. An unusual reaction of 5 with dimethylamine is reported. Condensation of 4,5-dichloro-3-nitro-6-[(trimethylsilyl)oxy]pyridazine with 4 yielded 4,5-dichloro-3-nitro-1-(2,3,5-tri-O-benzoyl-β- D -ribofuranosyl)pyridazin-6-one ( 24 ). Nucleophilic displacement of the aromatic nitro groups from 24 is discussed. Condensation of 3 with 3,5-di-O-p-toluoyl 2-deoxy- D -erythro-pentofuranosyl chloride ( 28 ) afforded an α, β mixture of 2-deoxy nucleosides. The synthesis of certain 3-substituted pyridazine 2′-deoxy necleosides are reported.  相似文献   

4.
Acetylation of 8-amino-9-β-D-ribofuranosylpurin-6-one (III), followed by chlorination of the tetraacetyl derivative 8-acetamido-9-(2,3,5-tri-O-aeetyl-β-D-ribofuranosyl)purin-6-one (IV) with phosphorus oxychloride yielded 8-aeetamido-6-ehloro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)-purine (V). The 6-chloro substitutent of V was readily displaced with thiourea to give, after treatment with sodium methoxide 8-acetamido-9-β-D-ribofuranosylpurine-6-thione (VIII). Chlorination of 8-bromo-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purin-6-one (IX) yielded 6,8-dichloro-9-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)purine (X), which underwent nucleophilic displacement with ethanolic ammonia selectively in the 8 position. The resulting 8-amino-6-chloro-9-β-D-ribofuranosylpurine (VII) was converted to 8-amino-9-β-D-ribofuranosylpurine-6-thione (I), 8-amino-6-methylthio-9-β-D-ribofuranosylpurine (II), and to 8-amino-6-hydrazino-9-β-D-ribofuranosylpurine (XI).  相似文献   

5.
7-Chloro-3-(β- D -2,3,5-tri-O-benzoylribofuranosyl)imidazo[4,5-c] pyridazine ( 3 ), obtained from the condensation of 7-chloro-3-trimethylsilylimidazo[4,5-c] pyridazine ( 1 ) with 2,3,5-tri-O-benzoyl- D -ribofuranosyl bromide ( 2 ), served as the percursor of 7-chloro- ( 4 ), 7-amino- ( 8 ), and 7-mercapto-3-(β- D -ribofuranosyl)imidazo[4,5-c] pyridazine ( 9 ). 3-(β- D -ribofuranosyl)imidazo[4,5-c] pyridazine ( 7 ) was obtained from 3-(β- D -2,3,5-tri-O-benzoylribofuranosyl)imidazo-[4,5-c]pyridazine ( 6 ). The site of ribosidation is based upon uv spectral comparisons with model methyl compounds. The assignment of the anomeric configuration is derived from pmr spectral data.  相似文献   

6.
The preparation of 2, 6-dichloro-9-(2′,3′,4′-tri-O-acetyl-β-D-ribopyranosyl)purine (I) has been accomplished utilizing the acid catalyzed fusion procedure. The displacement of the 6-chloro group, or the 2- and 6-chloro group has been studied. Several new 6-substituted-9-(β-D-ribopyranosyl)purines have been prepared by catalytic dehalogenation of the corresponding 2-chloropurine nucleosides. The conformation and configuration of these D-ribopyranosylpurines has been assigned with the assistance of proton magnetic resonance studies.  相似文献   

7.
D.c. polarography of 2-amino-6-chloropurine in aqueous medium over a broad pH range revealed two diffusion waves, the first of which corresponds to reduction of the C(6)-Cl bond, leading to formation of 2-aminopurine in high yield. Condensation of the sodium salt of 2-aminopurine with (2-acetoxyethoxy)methyl chloride led to the two isomeric 9- and 7-(2-hydroxyethoxymethyl)-2-aminopurines. The 9- isomer, 6-deoxyacyclovir, a prodrug of acyclovir previously synthesized by another route, was readily converted to the latter by xanthine oxidase; the 7-isomer was not a substrate. The intense fluorescence of 6-deoxyacyclovir makes it a convenient fluorescent substrate for xanthine oxidase, although less sensitive than xanthine; it is shown that 2-aminopurine would be a very sensitive fluorescent substrate. The polarographic behaviour of the riboside of 2-amino-6-chloropurine was virtually identical with that of the parent purine, leading to a simple procedure for conversion of 2-amino-6-chloropurine nucleosides and acyclonucleosides to the corresponding 2-aminopurine congeners.  相似文献   

8.
A new synthesis is reported for 4-aminoimidazo[1,2-a]-1,3,5-triazin-2(1H)-one ( =5-aza-7-deaza-isoguanosine; 8 ), a purine analog that, when incorporated into an oligonucleotide chain, presents a H-bond donor-acceptor-acceptor pattern to a complementary pyrimidine analog. A protected ribose derivative was coupled to 8 to yield 4-amino-8-(β-D -ribofuranosyl)imidazo[1,2-a]-1,3,5-triazin-2(8H)-one ( =5-aza-7-deaza-isoguanosine; 11 ) after deprotection, Alternatively, direct synthesis of both the ribo derivative 11 and the corresponding deoxyribo derivative 17 as the β-D -anomers was achieved using the enzyme purine nucleoside phosphorylase in a one-pot reaction. This adapts a known synthetic approach to yield a new strategy for obtaining diastereoisomerically pure deoxyribonucleoside analogs on 1-gram scales.  相似文献   

9.
A simple and high-yield synthesis of biologically significant 2′-deoxy-6-thioguanosine ( 11 ), ara-6-thioguanine ( 16 ) and araG ( 17 ) has been accomplished employing the Stereospecific sodium salt glycosylation method. Glycosylation of the sodium salt of 6-chloro- and 2-amino-6-chloropurine ( 1 and 2 , respectively) with 1-chloro-2-deoxy-3,5-di-O-(p-toluoyl)-α-D-erythro-pentofuranose ( 3 ) gave the corresponding N-9 substituted nucleosides as major products with the β-anomeric configuration ( 4 and 5 , respectively) along with a minor amount of the N-7 positional isomers ( 6 and 7 ). Treatment of 4 with hydrogen sulfide in methanol containing sodium methoxide gave 2′-deoxy-6-thioinosine ( 10 ) in 93% yield. Similarly, 5 was transformed into 2′-deoxy-6-thioguanosine (β-TGdR, 11 ) in 71 % yield. Reaction of the sodium salt of 2 with 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose ( 8 ) gave N-7 and N-9 glycosylated products 13 and 9 , respectively. Debenzylation of 9 with boron trichloride at ?78° gave the versatile intermediate 2-amino-6-chloro-9-β-D-arabinofuranosyl-purine ( 14 ) in 62% yield. Direct treatment of 14 with sodium hydrosulfide furnished ara-6-thioguanine ( 16 ). Alkaline hydrolysis of 14 readily gave 9-β-D-arabinofuranosylguanine (araG, 17 ), which on subsequent phosphorylation with phosphorus oxychloride in trimethyl phosphate afforded araG 5′-monophosphate ( 18 ).  相似文献   

10.
9-Amino-3-(β-D-ribofuranosyl)pyrazolo[3,2-i|purine ( 6 ) has been prepared from a fully protected 3-(β-D-ribofuranosyl)pyrazolo[3,2-i]purine ( 2 ) and the 9-bromo substituted derivative 3 by nitration, followed by reduction. Reaction of 9-bromo-3-(β-D-ribofuranosyl)pyrazolo[3,2-i)purine ( 1b ) with alkali gave the (pyrazol-3-yl)imidazole derivative, followed by diazocyclization with sodium nitrate to give 9-bromo-3-(β-D-ribofuran-osyl)imidazolo[4,5-d]pyrazolo[2,3-c][1,2,3]triazine ( 10 ) after deacetylation. Compounds 6 and 10 exhibited cytotoxic activity against leukemia cells.  相似文献   

11.
蔡汉成  尹端沚  张岚  汪勇先 《有机化学》2006,26(12):1709-1713
报道了2-氨基-6-氟-9-(4-羟基-3-羟甲基丁基)嘌呤(1)的合成, 通过对起始原料2-氨基-6-氯-9-(4-乙酰氧基-3-乙酰氧甲基丁基)嘌呤(2)水解脱去乙酰基, 得到2-氨基-6-氯-9-(4-羟基-3-羟甲基丁基)嘌呤(3). 化合物3与三甲胺乙醇溶液在混合溶剂[V(THF)∶V(DMF)=3∶1]中反应得到相应的氯化铵盐4, 然后与KF在DMF溶剂中反应, 得到化合物1. 产品经UV-vis, IR, 1H NMR, 19F NMR和MS表征. 考察了反应温度、氟化试剂等因素对氟化反应的影响, 为6位含氟的嘌呤核苷类化合物的合成提供了一种直接、简易的新方法.  相似文献   

12.
Nucleosides and Nucleotide. Part 15. Synthesis of Deoxyribonucleoside Monophosphates and Triphosphates with 2(1H)-Pyrimidinone, 2(1H)-Pyridinone and 4-Amino-2(1H)-pyridinone as the Bases The phosphorylation of the modified nucleosides 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone (Md, 4 ), 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone (Zd, 6 ) and the synthesis of 1–2′-deoxy-β-D -ribofuranosyl-2(1 H)-pyrimidinone-5′-O-triphosphate (pppMd, 1 ), 1-(2′-deoxy-β-D ribofuranosyl)-2(1 H)-pyridinone-5′-O-triphosphate (pppIId, 2 ), and 4-amino-1-(2′-deoxy-βD -ribofuranosyl)-2(1 H)-pyridinone-5′-O-triphosphate (pppZd, 3 ) are described. The nucleoside-5′-monophosphates pMd (5) and pZd (7) were obtained by selective phosphorylation of Md (4) and Zd (6) , respectively, using phosphorylchloride in triethyl phosphate or in acetonitril. The reaction of pMd (5) pII d (8) or pZd (7) with morpholine in the presence of DCC led to the phosphoric amides 9, 10 and 11 , respectively, which were converted with tributylammonium pyrophosphate in dried dimethylsulfoxide to the nucleoside-5′triphosphates 1, 2 and 3 , respectively.  相似文献   

13.
Several new acyclonucleoside purine and 8-azapurine analogs have been prepared from 2-amino-4,6-dichloropyrimidine ( 1 ) and 3-amino-1,2-propanediol ( 2a ) and 4-amino-1-butanol ( 2b ), respectively, as the starting materials. The new target compounds are: 2-amino-6-chloro-9-(2,3-dihydroxypropyl)purine ( 6a ), 2-amino-6-chloro-9-(4-hydroxybutyl)purine ( 6b ), 2-amino-6-chloro-9-(2,3-dihydroxypropyl)-8-azapurine ( 7a ), 2-amino-6-chloro-9-(4-hydroxybutyl)-8-azapurine ( 7b ), 9-(2,3-dihydroxypropyl)-8-azaguanine ( 8a ), 9-(4-hydroxybutyl)-8-azaguanine ( 8b ), 9-(2,3-dihydroxypropyl)-8-azathioguanine ( 9a ), and 9-(4-hydroxybutyl)-8-azathioguanine ( 9b ). Also, the requisite intermediate pyrimidine derivatives, 2,5-diamino-4-(2,3-dihydroxypropylamino)-6-chloropyrimidine ( 5a ) and 2,5-diamino-4-(4-hydroxybutylamino)-6-chloropyrimidine ( 5b ) are novel.  相似文献   

14.
The reaction of 4-chloro-5-amino-6-(1,3-dihydroxy-2-propyl)aminopyrimidine with excess ethyl orthoformate gave a cyclic acetal, viz., 6-chloro-9-(2-ethoxy-1,3-dioxan-5-yl)purine, amination of which yielded 6-amino-9-(2-ethoxy-1,3-dioxan-5-yl)purine. The presence of two configurational isomers with a diaxial orientation of the purine ring and the ethoxy group in the trans isomer and an equatorial orientation of the ethoxy group in the cis isomer was established for these compounds by 1H and 13C NMR and IR spectroscopy. The three-dimensional structure of trans-6-chloro-9-(2-ethoxy-1,3-dioxan-5-yl)purine was determined by an x-ray difraction study, and the trans-diaxial orientation of the purine ring and the ethoxy group was confirmed; it is shown that the dioxane ring is in an anti conformation relative to the purine ring.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 976–983, July, 1979.  相似文献   

15.
1-(2′-Deoxy-5′-O-dimethoxytrityl-′-D -ribofuranosyl)-1 H-benzimidazole 3′-[(p-chlorophenyl)(2-cyanoethyl) phosphate] ( 6 ) has been synthesized from 1-(β-D -ribofuranosyl)-1H-benzimidazole ( 3b ) using regiospecific 2′-deoxygenation. The latter compound was obtained by glycosylation of benzimidazole with the D -ribose derivative 2 leading exclusively of the β-D -anomer.  相似文献   

16.
1-Methylisoguanosine was synthesized by a one-pot reaction involving a condensation of 5-amino-1-(β-D-ribofuranosyl)imidazole-4-carboxamide (1) with methyl isothiocyanate, treatment of the resulting thiourea derivative with DCC furnished 5-(3-methyl-1-ureido)-1-(β-D-ribofuranosyl)imidazole-4-carbonitrile (4) which was then annulated with ethanolic ammonia to furnish doridosine in a 68% yield from 1.  相似文献   

17.
本文报道以次黄苷为原料, 经酯化, 再在缩合剂4-氯苯磷酰二氯存在下与吡啶反应, 形成嘌呤N-6-吡啶盐中间体2, 该中间体2分别与碱性强弱不同的胺或氨及2moldm^-^3NaOH的醇溶液在室温反应, 可方便的合成6-NH2, 6-OCH3以及6-OCH2CH3-9-(β-D-呋喃核糖)嘌呤衍生物。并对以上产物形成的机制作了探讨。  相似文献   

18.
Synthesis of alkenyl derivatives of certain purines and purine analogs is described. Direct alkylation of the sodium salt of 6-chloropurine (1) either with 1-bromo-2-pentene or 4-bromo-2-methyl-2-butene in N,N-dimethylformamide furnished N-7, 4a and N-9, 3a , 3b alkenyl derivatives. Similar alkylation of 2-amino-6-chloropurine (2) provided the corresponding N-7, 4c-4e and N-9, 3c-3e alkenyl derivatives. Acid hydrolysis of these chloro derivatives 3a-3e, 4a,c-e furnished the corresponding alkenyl hypoxan-thines 6a, 6b and 7a or alkenyl guanines 6c-6e and 7c-7e. Treatment of 3a-3d with thiourea in absolute ethanol provided the corresponding 6-thio derivatives 5a-5d. Alkylation of the sodium salt of either purine-6-carboxamide (8) or 1,2,4-triazole-3-carboxamide (10) gave mainly one isomer 9a, 9b and 11a, 11b. The direct alkylation of pyrrolo[2,3-d]pyrimidin-4(3H)-one (12) gave N-3 alkenyl derivatives 13a, 13b , and the N-7 alkenyl derivatives 16a, 16b have been prepared starting from the 4-chloro derivative 14 . Synthesis of 2-amino-7-(2-penten-1-yl)pyrrolo[2,3-d]pyrimidin-4(3H)-one (19a) has been accomplished starting from 2-amino-4-methoxypyrrolo[2,3-d]pyrimidine (17) . These alkenyl derivatives were found to be devoid of anti-HCMV activity in vitro.  相似文献   

19.

The interaction of gold(I) thiomalate, [Autm] n with thiolated nucleosides, 6-mercaptopurine (6-MP), 6-mercaptopurine-9- g - D -riboside (6-MPR) and 2-amino-6-mercaptopurine-9- g - D -riboside (2-A-6-MPR) has been studied by 1 H and 13 C NMR spectroscopy. It has been observed that these thiolated purine bases break the [Autm] n polymer and form complexes of the type $[\rangle \!{\rm C} {{\hskip -1.7pt \openup -13pt \eqalign{\displaystyle{-\!\!-}\cr\displaystyle{-\!\!-}}\hskip -1.7pt}}\hbox{{\rm S}-{\rm Au-tm}]}$  相似文献   

20.
Nucleosides and Nucleotides. Part 16. The Behaviour of 1-(2′-Deoxy-β-D -ribofuranosyl)-2(1H)-pyrimidinone-5′-triphosphate, 1-(2′-Deoxy-β-D -ribofuranosyl-2(1H))-pyridinone-5′-triphosphate and 4-Amino-1-(2′-desoxy-β-D -ribofuranosyl)-2(1H)-pyridinone-5′-triphosphate towards DNA Polymerase The behaviour of nucleotide base analogs in the DNA synthesis in vitro was studied. The investigated nucleoside-5′-triphosphates 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyrimidinone-5′-triphosphate (pppMd), 1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppIId) and 4-amino-1-(2′-deoxy-β-D -ribofuranosyl)-2(1 H)-pyridinone-5′-triphosphate (pppZd) can be considered to be analogs of 2′-deoxy-cytidine-5′-triphosphate. However, their ability to undergo base pairing to the complementary guanine is decreased. When pppMd, pppIId or pppZd are substituted for pppCd in the enzymatic synthesis of DNA by DNA polymerase no incorporation of these analogs is observed. They exhibit only a weak inhibition of the DNA synthesis. The mode of the inhibition is uncompetitive which shows that these nucleotide analogs cannot serve as substrates for the DNA polymerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号