首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the global stability, the periodic character and the boundedness nature of solutions of the equation in the title for all admissible nonnegative values of the parameters and the initial conditions. We show that the solutions exhibit a trichotomy character depending on how the parameter γ compares to the sum of the parameters δ and A.  相似文献   

2.
We investigate the global character of solutions of the equation in the title with positive parameters and positive initial conditions. We obtain results about the global attractivity of the equilibrium, the existence and attractivity of the period-two solution and the semicycles.  相似文献   

3.
4.
5.
6.

We investigate the global stability, the periodic character, and the boundedness nature of solutions of the difference equation x n +1 = f + n x n m (2 k +1) + i x n m 2 l A + x n m 2 l , n =0,1,… where k and l are non-negative integers, the parameters f , n , i , A are non-negative real numbers with f + n + i >0, and the initial conditions are non-negative real numbers. We show that the solutions exhibit a trichotomy character depending upon the parameters n , i and A .  相似文献   

7.
We study, firstly, the dynamics of the difference equation $x_{n + 1} = \alpha + \frac{{x_n^p }}{{x_{n - 1}^p }}$ , withp ∈ (0,1) and α [0, ∞). Then, we generalize our results to the (k + 1)th order difference equation $x_{n + 1} = \alpha + \frac{{x_n^p }}{{x_{n - k}^p }}$ ,k = 2, 3,... with positive initial conditions.  相似文献   

8.
The boundedness, global attractivity, oscillatory and asymptotic periodicity of the positive solutions of the difference equation of the form $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}, n = 0,1,...$$ is investigated, where all the coefficients are nonnegative real numbers.  相似文献   

9.
The main objective of this paper is to study the boundedness character, the periodic character and the global stability of the positive solutions of the following difference equation $x_{n + 1} = \frac{{\alpha x_n + \beta x_{n - 1} + \gamma x_{n - 2} + \delta x_{n - 3} }}{{Ax_n + Bx_{n - 1} + Cx_{n - 2} + Dx_{n - 3} }},n = 0,1,2.....$ where the coefficientsA, B, C, D, α, β, γ, δ, and the initial conditionsx -3,x -2,x -1,x 0 are arbitrary positive real numbers.  相似文献   

10.
We investigate the boundedness nature of positive solutions of the difference equation $$ x_{n + 1} = max\left\{ {\frac{{A_n }} {{X_n }},\frac{{B_n }} {{X_{n - 2} }}} \right\},n = 0,1,..., $$ where {A n } n=0 and {B n } n=0 are periodic sequences of positive real numbers.  相似文献   

11.
In this paper we consider the difference equation $$x_{n + 1} = \frac{{a + bx_{n - k} - cx_{n - m} }}{{1 + g(x_{n - 1} )}},$$ wherea, b, c are nonegative real numbers,k, l, m are nonnegative integers andg(x) is a nonegative real function. The oscillatory and periodic character, the boundedness and the stability of positive solutions of the equation is investigated. The existence and nonexistence of two-period positive solutions are investigated in details. In the last section of the paper we consider a generalization of the equation.  相似文献   

12.
I. Baoulina 《Acta Appl Math》2005,85(1-3):35-39
We obtain an explicit formula for the number of solutions of a special equation in a finite field under a certain restriction on the exponents. Mathematics Subject Classifications (2000) primary: 11G25, secondary: 11T24.  相似文献   

13.
14.
15.
The boundedness, global attractivity, oscillatory and asymptotic periodicity of the nonnegative solutions of the difference equation $$x_{n + 1} = \frac{{ax_{n - 2m + 1}^p }}{{b + cx_{n - 2k}^{p - 1} }}, n = 0, 1,...$$ wherem, k ∈ N, 2k > 2m?1,a, b, c are nonnegative real numbers andp < 1, are investigated.  相似文献   

16.
17.
We study the behavior of all positive solutions of the difference equation in the title, where p is a positive real parameter and the initial conditions x−2,x−1,x0 are positive real numbers. For all the values of the positive parameter p there exists a unique positive equilibrium x? which satisfies the equation
  相似文献   

18.
In this paper, we investigate the local and global stability and the period two solutions of all nonnegative solutions of the difference equation,
$$\begin{aligned} x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{A+Bx_{n-k}} \end{aligned}$$
where abAB are all positive real numbers, \(k \ge 1\) is a positive integer, and the initial conditions \(x_{-k},x_{-k+1},...,x_{0}\) are nonnegative real numbers. It is shown that the zero equilibrium point is globally asymptotically stable under the condition \(a+b \le A\), and the unique positive solution is also globally asymptotically stable under the condition \(a-b \le A \le a+b\). By the end, we study the global stability of such an equation through numerically solved examples.
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号