首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we prove a result on lower semicontinuity of pullback attractors for dynamical systems given by semilinear differential equations in a Banach space. The situation considered is such that the perturbed dynamical system is non-autonomous whereas the limiting dynamical system is autonomous and has an attractor given as union of unstable manifold of hyperbolic equilibrium points. Starting with a semilinear autonomous equation with a hyperbolic equilibrium solution and introducing a very small non-autonomous perturbation we prove the existence of a hyperbolic global solution for the perturbed equation near this equilibrium. Then we prove that the local unstable and stable manifolds associated to them are given as graphs (roughness of dichotomy plays a fundamental role here). Moreover, we prove the continuity of this local unstable and stable manifolds with respect to the perturbation. With that result we conclude the lower semicontinuity of pullback attractors.  相似文献   

2.
This paper focuses on multistability theory for discontinuous dynamical systems having a set of multiple isolated equilibria and/or a continuum of equilibria. Multistability is the property whereby the solutions of a dynamical system can alternate between two or more mutually exclusive Lyapunov stable and convergent equilibrium states under asymptotically slowly changing inputs or system parameters. In this paper, we extend the definition and theory of multistability to discontinuous autonomous dynamical systems. In particular, nontangency Lyapunov-based tests for multistability of discontinuous systems with Filippov and Carathéodory solutions are established. The results are then applied to excitatory and inhibitory biological neuronal networks to explain the underlying mechanism of action for anesthesia and consciousness from a multistable dynamical system perspective, thereby providing a theoretical foundation for general anesthesia using the network properties of the brain.  相似文献   

3.
Discrete time nonautonomous dynamical systems generated by nonautonomous difference equations are formulated as discrete time skew—product systems consisting of cocycle state mappings that are driven by discrete time autonomous dynamical systems. Forwards and pullback attractors are two possible generalizations of autonomous attractors to such systems. Their existence follows from appropriate forwards or pullback dissipativity conditions. For discrete time nonautonomous dynamical systems generated by asynchronous systems with frequency updating components such a dissipativity condition is usually known for a single starting parameter value of the driving system. Additional conditions that then ensure the existence of a forwards or pullback attractor for such an asynchronous system are investigated here  相似文献   

4.
In this work, we define the notions of ‘impulsive non‐autonomous dynamical systems’ and ‘impulsive cocycle attractors’. Such notions generalize (we will see that not in the most direct way) the notions of autonomous dynamical systems and impulsive global attractors in the current published literature. We also establish conditions to ensure the existence of an impulsive cocycle attractor for a given impulsive non‐autonomous dynamical system, which are analogous to the continuous case. Moreover, we prove the existence of such attractor for a non‐autonomous 2D Navier–Stokes equation with impulses, using energy estimates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the union of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an autonomous map, properties that the nonautonomous attractor inherits from the autonomous attractor are discussed. Examples from population biology are presented.  相似文献   

6.
The theory of dynamical systems has been expanded by the introduction of local dynamical systems [10, 4, 9] and local semidynamical systems [1]. Using integral curves of autonomous ordinary differential equations to illustrate these generalizations, we find that, roughly, the integral curves form a local dynamical system if solutions exist and are unique without requiring existence for all time, and the integral curves form a local semidynamical system if solutions exist and are unique in the positive sense but need not exist for all positive time. In addition to autonomous ordinary differential equations, the enlarged theory of dynamical systems has applications to nonautonomous ordinary differential equations, certain partial differential equations, functional differential equations, and Volterra Integral equations [9, 1, 2, 8], respectively. All of these have metric phase spaces. Since many dynamic considerations are invariant to reparameterizations, it is of interest to known when a local dynamical (or semidynamical) system can be reparameterized to yield a “global” dynamical (or semidynamical) system. For autonomous ordinary differential equations, Vinograd [7] has shown that the local dynamical system on an open subset ofRn formed by integral curves is isomorphic (in the sense of Nemytskii and Stepanov) to a global dynamical system. In an extensive study of isomorphisms, Ura [12] has expanded the Gottschalk-Hedlund notion of an isomorphism and restated Vinograd's result in terms of a reparameterization. In this paper we study the problem of finding a global dynamical (or semidynamical) system which is isomorphic to a given local system. A necessary and sufficient condition is found which is then used to show that the Vinograd result holds on metric spaces.  相似文献   

7.
This paper focuses on semistability and finite-time semistability for discontinuous dynamical systems. Semistability is the property whereby the solutions of a dynamical system converge to Lyapunov stable equilibrium points determined by the system initial conditions. In this paper, we extend the theory of semistability to discontinuous autonomous dynamical systems. In particular, Lyapunov-based tests for strong and weak semistability as well as finite-time semistability for autonomous differential inclusions are established. Using these results we then develop a framework for designing semistable and finite-time semistable protocols for dynamical networks with switching topologies. Specifically, we present distributed nonlinear static and dynamic output feedback controller architectures for multiagent network consensus and rendezvous with dynamically changing communication topologies.  相似文献   

8.
In this paper, a new 3D autonomous Lorenz-type chaotic system is modelled based on the condition that the system may generate chaos whereas it has only stable or non-hyperbolic equilibrium points. This system also includes some well-known Lorenz-like systems as its special cases, such as the diffusionless Lorenz system, the Burke-Shaw system and some other systems found. Although the new chaotic system is similar to other Lorenz-type systems in algebraic structure, they are topologically non-equivalent. This interesting fact motivates one to further investigate its dynamical behaviours, such as the number and the stability of equilibrium points, Hopf bifurcation and its direction, Poincaré maps, Lyapunov exponents and dissipativity, etc. Given numerical simulations not only verify the corresponding theoretically analytical results, but also demonstrate that this system possesses abundant and complex dynamical properties, which need further attention.  相似文献   

9.
Abstract In this note, we consider a Frémond model of shape memory alloys. Let us imagine a piece of a shape memory alloy which is fixed on one part of its boundary, and assume that forcing terms, e.g., heat sources and external stress on the remaining part of its boundary, converge to some time-independent functions, in appropriate senses, as time goes to infinity. Under the above assumption, we shall discuss the asymptotic stability for the dynamical system from the viewpoint of the global attractor. More precisely, we generalize the paper [12] dealing with the one-dimensional case. First, we show the existence of the global attractor for the limiting autonomous dynamical system; then we characterize the asymptotic stability for the non-autonomous case by the limiting global attractor. * Project supported by the MIUR-COFIN 2004 research program on “Mathematical Modelling and Analysis of Free Boundary Problems”.  相似文献   

10.
In this paper, the sensitivity for non-autonomous discrete systems is investigated. First of all, two sufficient conditions of sensitivity for general non-autonomous dynamical systems are presented. At the same time, one stronger form of sensitivity, that is, cofinite sensitivity, is introduced for non-autonomous systems. Two sufficient conditions of cofinite sensitivity for general non-autonomous dynamical systems are presented. We generalized the result of sensitivity and strong sensitivity for autonomous discrete systems to general non-autonomous discrete systems, and the conditions in this paper are weaker than the correlated conditions of autonomous discrete systems.  相似文献   

11.
In this paper, a novel four-dimensional autonomous system in which each equation contains a quadratic cross-product term is constructed. It exhibits extremely rich dynamical behaviors, including 3-tori (triple tori), 2-tori (quasi-periodic), limit cycles (periodic), chaotic and hyperchaotic attractors. In particular, we observe 3-torus phenomena, which have been rarely reported in four-dimensional autonomous systems in previous work. With the parameter r varying in quite a wide range, the evolution process of the system begins from 3-tori, and after going through a series of periodic, quasi-periodic and chaotic attractors in so many different shapes coming into being alternately, it evolves into hyperchaos, finally it degenerates to periodic attractor. Moreover, when the system is hyperchaotic, its two positive Lyapunov exponents are much larger than those of the hyperchaotic systems already reported, especially the largest Lyapunov exponents. We also observe a chaotic attractor of a very special shape. The complex dynamical behaviors of the system are further investigated by means of Lyapunov exponents spectrum, bifurcation diagram and phase portraits.  相似文献   

12.
一类时变动力系统的高余维分岔及其控制   总被引:2,自引:0,他引:2  
研究了一类时变动力系统的高余维分岔及其控制问题,首先利用新方法对时变分岔方程的两个方向的分岔转迁和跃迁现象进行分析,分别通过慢变解的线性化近似和量级平衡估计分岔转迁值,然后研究这类时变分岔方程的线性反蚀控制问题,通过分析相应的二维高次自治系统的Hopf分岔,在适当的条件下得到了稳定的动态滞后环,研究揭示出脉冲振动产生的机理是分岔参数随时间周期变化经过定常分岔值时所发生的分岔转迁的滞后和跃迁现象。  相似文献   

13.
We introduce a natural order to study properties of dynamical systems, especially their invariant sets. The new concept is based on the classical Conley index theory and transition probabilities among neighborhoods of different invariant sets when the dynamical systems are perturbed by white noises. The transition probabilities can be determined by the Fokker–Planck equation and they form a matrix called a Markov matrix. In the limiting case when the random perturbation is reduced to zero, the Markov matrix recovers the information given by the Conley connection matrix. The Markov matrix also produces a natural order from the least to the most stable invariant sets for general dynamical systems. In particular, it gives the order among the local extreme points if the dynamical system is a gradient-like flow of an energy functional. Consequently, the natural order can be used to determine the global minima for gradient-like systems. Some numerical examples are given to illustrate the Markov matrix and its properties.  相似文献   

14.
A nonstandard finite difference method for solving autonomous dynamical systems is constructed. The proposed numerical method is computationally efficient and easy to implement. It is designed so that it preserves positivity of solutions and the local behavior of the dynamical system near equilibria.  相似文献   

15.
In this paper, we are concerned with the problem of stabilization for autonomous dynamical systems. We use theories in Liapunov stability and Lasalle stability theory and show that system (H) is stabilizable.  相似文献   

16.
Third-order explicit autonomous differential equations, commonly called jerky dynamics, constitute a powerful approach to understand the properties of functionally very simple but nonlinear three-dimensional dynamical systems that can exhibit chaotic long-time behavior. In this paper, we investigate the dynamics that can be generated by the two simplest polynomial jerky dynamics that, up to these days, are known to show chaotic behavior in some parameter range. After deriving several analytical properties of these systems, we systematically determine the dependence of the long-time dynamical behavior on the system parameters by numerical evaluation of Lyapunov spectra. Some features of the systems that are related to the dependence on initial conditions are also addressed. The observed dynamical complexity of the two systems is discussed in connection with the existence of homoclinic orbits.  相似文献   

17.
Important concepts concerning tubes in dynamical systems are defined in details. In the cases of a homoclinic tube and a heteroclinically tubular cycle in autonomous systems, existence of tubular chaos is established. The main goal of this article is to stress the importance of tubes in high dimensional dynamical systems.  相似文献   

18.
In this paper, we study periodic linear Volterra systems on periodic time scales which include not only discrete and continuous dynamical systems but also systems with a mixture of discrete and continuous parts (e.g. hybrid dynamical systems). We discuss the relationship between the solution of the Volterra integro-dynamic system and the limiting equation of the corresponding system. We also develop integrability conditions of the resolvent of Volterra integro-dynamic systems.  相似文献   

19.
Switching systems are non-autonomous dynamical systems obtained by switching between two or more autonomous dynamical systems as time goes on. They can be mainly found in control theory, physics, economy, biomathematics, chaotic cryptography and of course in the theory of dynamical systems, in both discrete and continuous time. Much of the recent interest in these systems is related to the emergence of new properties by the mechanism of switching, a phenomenon known in the literature as Parrondo's paradox. In this paper we consider a discrete-time switching system composed of two affine transformations and show that the switched dynamics has the same topological entropy as the switching sequence. The complexity of the switching sequence, as measured by the topological entropy, is fully transferred, for example, to the switched dynamics in this particular case.  相似文献   

20.
In this paper, we introduce a class of predator–prey system with general functional response, whose harvesting policy is modeled by a discontinuous function. Based on the differential inclusions theory, topological degree theory in set‐valued analysis and generalized Lyapunov approach, we analyze the existence, uniqueness and global asymptotic stability of positive periodic solution. In particular, a series of useful criteria on existence, uniqueness and global asymptotic stability of the positive equilibrium point are established for the autonomous system corresponding to the non‐autonomous biological and mathematical model with a discontinuous right‐hand side. Moreover, some new sufficient conditions are provided to guarantee the global convergence in measure of harvesting solution and convergence in finite time of any positive solution for the autonomous discontinuous biological system. The obtained results, which improve and generalize previous works on dynamical behavior in the literature, are of interest for understanding and designing biological system with not only continuous or even Lipschitz continuous but also discontinuous harvesting function. Finally, we give three examples with numerical simulations to show the applicability and effectiveness of our main results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号