首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Competition of Endoperoxide and Hydroperoxide Formation in the Reaction of Singlet Oxygen with Cyclic, Conjugated Dienes Rose-bengal-sensitized photooxygenation of (?)-(R)-α-phellandrene ( 1 ) in MeOH at room temperature yielded a complex mixture of products, contrary to previous reports describing cis-(3S, 6R)-epidioxy-p-menthene ( 2 ) and trans-(3R, 6S)-epidioxy-p-menthene ( 3 ) as the only products. The mixture was separated by prep. HPLC (silica gel, pentane/Et2O 9:1). Besides the known endoperoxides 2 (yield 39%) and 3 (26%), all those hydroper-oxides, which can be deduced from an ene reaction of 1O2 with 1 , were isolated, i.e. 4β-p-mentha-2,5-dien-1β-yl hydroperoxide ( 4 ) (14%), 4β-p-mentha-2,5-dien-1α-yl hydroperoxide ( 5 ) (9%), (2R, 4R)-p-mentha-1(7), 5-dien-2-yl hydroperoxide ( 6 ) (2,1%), (2S, 4R)-p-mentha-1(7),5-dien-2-yl hydroperoxide ( 7 ) (1,5%) and (1R)-p-mentha-3,6-dien-yl hydroperoxide ( 8 ; 1,5%; Scheme 1). Furthermore, the constant cis/trans ratio for all diastereoisomeric pairs ( 2 / 2 , 4 / 2 , 6 / 2 ) was striking. With the help of the two possible conformers 1a and 1b of the starting material a model of a common first step for endoperoxide as well as for hydroperoxide formation is developed. A photooxygenation at ?50° supports this model. The absolute value of the cis/trans ratio changes in the same way for the endoperoxides and the hydroperoxides.  相似文献   

2.
Irradiation of 3-phenyl-2H-azirine ( 2 ) in benzene solution with a high-pressure mercury lamp yields 4,5-diphenyl-1,3-diazabicyclo[3,1,0]hex-3-ene ( 4 ) and not 3-phenylimino-4-phenyl-1-azabicyclo[2,1,0]pentane ( 1 ), as had been reported previously by others [2]. 2-Methyl-3-phenyl-2H-azirine ( 3 ) yields on irradiation a 2:1 mixture of 2-exo, 6-exo- and 2-exdo, 6-exo-dimethyl-4,5-diphenyl-1,3-diazabicyclo[3,1,0]hex-3-ene (2-exo,6-exo- and 2-endo, 6-exo- 5 ). Irradiation of 2,3-diphenyl-2H-azirine ( 8 ) leads to the formation of 2,4,5-triphenyl-imidazole ( 9 ) and tetra-phenylpyrazine ( 10 ). The suggested reaction path for the generation of 9 and 10 is shown in Scheme 2.  相似文献   

3.
UV Irradiation of 3-oxocyclopent-1-enyl acetate ( 17 ) and acetylene in MeCN at 0° gives, besides the product of normal enone-alkyne [2 + 2] cycloaddition (cis-4-oxobicyclo[3.2.0] hept-6-en-1-yl acetate, 18 ) and its product of oxa-di-π-methane rearrangement (5-oxotricyclo[4.1.0.02,7]hept-2-yl acetate, 19 ), unexpected products of further addition of a molar equivalent of acetylene. These are indanone ( = 2,3-dihydro-1H-inden-1-one, 16 ), in 21% yield, cis-1-cisoid-1,2-cis-2- ( 20 ) and cis-1-transoid-1,2-cis-2-7-oxotricyclo[4.3.0.02,5]non-3-en-1-yl acetate ( 21 ), 4-oxo-7-‘exo’-vinyltricyclo[3.2.0.02,6]hept-2-yl acetate ( 22 ), cis-4-oxo-6-‘endo’- ( 23 ) and cis-4-oxo-6-‘exo’-vinylbicyclo[3.2.0]hept-1-yl acetate ( 24 ), and cis-4-oxo-7-‘exo’-vinylbicyclo[3.2.0]hept-1-yl acetate ( 25 ). At least in part, indanone must be formed via intermediates 20 and 21 . In fact, on heating a 9:1 mixture 20/21 , indanone is obtained quantitatively. With 3-oxocyclopent-1-ene-1-carbonitrile ( 15 ) in place of 17 , indanone is formed in lower (8%) yield besides much tars.  相似文献   

4.
The one-pot synthesis of 3-isopropyl-6-methyl-1H-benzo[f]indole-4,9-dione ( 3e ), N-(4-[isopentylamino]-3,6-dioxocyclohexa-1,4-dien-1-yl)acetamide ( 4d ), 2-(isopentylamino)-6-methylnaphthalene-1,4-dione ( 5b ), and 2-(4-acetamido-3,6-dioxocyclohexa-1,4-dien-1-yl)-N,N-diisopentyl-3-methylbutanamide ( 6a ) has been achieved via either pyrrol/aryl ring formations or amination reactions from the Pd(II)-catalyzed reaction of N-(3,6-dioxocyclohexa-1,4-dien-1-yl)acetamide ( 2a_BQ ) and in the presence of triisopentylamine. More 3 -, 4 -, 5 -, and 6 -like derivatives were obtained while other trialkylamines were used. Crystal structures of 3d_O , 3e , 4b , 4c , 4d , 5b, and 6a were determined by single-crystal X-ray diffraction methods. The 3 - and 5 -like products reveal the formations of newly generated benzene rings with/without substitutions. The formation of 6a also implies an unusual reaction pathway of its generation. Based on the structural conformations of various 3 -like products, as well as 6a , mechanisms were proposed to account for the formations of these compounds. Various fascinating conformations of products observed in this work demonstrate the diversities of this type of reactions.  相似文献   

5.
Photocyclization reactions were carried out on 2-alkoxybenzophenones 1a-h and ethyl 2-benzoyl-phenoxyacetates 5a-e in three solvents of different polarity (benzene, acetonitrile and methanol) to examine solvent and substituent effects on the cyclization of 1,5-biradical intermediates to dihydrobenzofuranols. Irradiation of 1a-f in benzene gave dihydrobenzofuranols 4a-f in 80–94% yields. The ratios of cis-and trans-isomers of 4b-f were 12:1 to 1:0, showing stereoselective formation of cis-isomers. On the other hand, irradiation of 1a-f in acetonitrile and methanol gave 4a-f in 68–81% and 7–75% yields, respectively. However, the ratios of cis- and trans-isomers of 4b-f were 3.5:1 to 1.3:1 in acetonitrile and 2.0:1 to 1:1.7 in methanol, showing decreased stereoselectivity. The decrease in stereoselectivity was attributed to intermolecular hydrogen bonding between the hydroxyl group of 1,5-biradicals and solvents (acetonitrile and methanol). Similarly, irradiation of 5a-e in benzene afforded cis-dihydrobenzofuranols cis- 11a-e stereo-selectively. In contrast, irradiation of 5a-e in acetonitrile and methanol gave a mixture of cis- and trans-isomers of 11a-e because of intermolecular hydrogen bonding between the hydroxyl group of 1,5-biradicals and solvents. The cis and trans ratios of 11a-e varied from 1.5:1 to 17.8:1 in acetonitrile and from 2.6:1 to 1:4.5 in methanol. Solvent and substituent effects on the cyclization of 1,5-biradicals and reaction pathways are discussed.  相似文献   

6.
A semi-rigid bipyrazolyl ligand, namely 5-tert-butyl-1,3-bis[(3′,5′-diethyl-1H-pyrazol-4′-yl) methylene]benzene, and its Ag(I) and Cu(II) complexes have been prepared and structurally characterized. X-ray analysis demonstrates that the Ag(I) complex is based on a dinuclear molecular rectangle, while the Cu(II) complex displays a mono-strand helical structure. Two different conformations, namely cis,cis and cis,trans have been observed for this bipyrazolyl ligand.  相似文献   

7.
Photochemical Reaction of Optically Active 2-(1′-Methylallyl)anilines with Methanol It is shown that (?)-(S)-2-(1′-methylallyl)aniline ((?)-(S)- 4 ) on irradiation in methanol yields (?)-(2S, 3R)-2, 3-dimethylindoline ((?)-trans- 8 ), (?)-(1′R, 2′R)-2-(2′-methoxy-1′-methylpropyl)aniline ((?)-erythro- 9 ) as well as racemic (1′RS, 2′SR)-2-(2′-methoxy-1′-methylpropyl) aniline ((±)-threo- 9 ) in 27.1, 36.4 and 15.7% yield, respectively (see Scheme 3). By deamination and chemical correlation with (+)-(2R, 3R)-3-phenyl-2-butanol ((+)-erythro- 13 ; see Scheme 4) it was found that (?)-erythro- 9 has the same absolute configuration and optical purity as the starting material (?)-(S)- 4 . Comparable results are obtained when (?)-(S)-N-methyl-2-(1′-methylallyl)aniline ((?)-(S)- 7 ) is irradiated in methanol, i.e. the optically active indoline (+)-trans- 10 and the methanol addition product (?)-erythro- 11 along with its racemic threo-isomer are formed (cf. Scheme 3). These findings demonstrate that the methanol addition products arise from stereospecific, methanol-induced ring opening of intermediate, chiral trans, -(→(?)-erythro-compounds) and achiral cis-spiro [2.5]octa-4,6-dien-8-imines (→(±)-threo-compounds; see Schemes 1 and 2).  相似文献   

8.
Irradiation (λ = 350 nm) of 1H-[2]benzothiopyran-1-one ( 2 ) in the solid state affords selectively and in good yield 6aα, 6bα, 12bα, 12cα -tetrahydrocyclobuta[1, 2-c:4, 3-c′]bis([2]benzothiopyran)-5, 8-dione ( 3 ), the head-to-head (HH) cis-cisoid-cis-cyclodimer of 2 , X-Ray analysis of 2 confirms that this reaction proceeds according to the well-established topochemical principles. The same dimer 3 is obtained in low yields on irradiation of 10−1 M solutions of 2 in either MeOH or MeCN, while no conversion at all is observed in benzene. On irradiation of 2 in MeCN in the presence of tetrachloroethene, the [2 + 2] photocycloadduct 4 is formed in good yield, the conversion 2 → 4 being efficiently quenched by naphthalene. In contrast, no reaction is observed -on irradiation of 2 in the presence of 2, 3-dimethylbut-2-ene, neither in polar nor in apolar solvents.  相似文献   

9.
Abstract

The decarboxylation reaction of δ -cis-β-[Co(L1)(pdH)]2+ complex yielded δ -cis-β-[Co(L1) (R-pro)]2+, while the δ -cis-β-[Co(L2) (S-pro)]2+ was obtained from the reaction of δ -cis-β-[Co(L2) (pdH)]2+, where L1 is (3R)3-methyl-1, 6-bis[(2S)-pyrrolidin-2-yl]-2, 5-diazahexane, L2 is (3S) 3-methyl-1, 6-bis-[(2S)-pyrrolidin-2-yl]-2, 5-diazahexane, and pdH is the pyrrolidine-2, 2-dicarboxylate ion. The asymmetrically synthesized prolines were isolated via the decomposition of the decarboxylated complexes. The proline isolated from δ -cis-β-[Co(L1) (R-pro)]2+ showed a specific rotation of +12.0, representing a 24% excess of R-proline over S-proline, while the proline isolated from δ -cis-β-[Co(L2) (S-pro)]2+ showed a specific rotation of -10.0, indicating a 20% excess of S-proline over R-proline.  相似文献   

10.
4-methyl-4-trichloromethylcyclohexadiene triphenylphosphonium ylide obtained by treatment of (1-methyl-1-tricholoromethylcyclohexa-2,4-dien-4-yl)-triphenylphosphonium bromide with BunLi in THF is stabilized by the abstraction of the CCl3 group to give (p-tolyl)triphenylphosphonium cation, which was isolated as the corresponding hydroxide. Conversely, an analogous pyridinium ylide, obtained by treatment ofZ/E stereoizomericN-(1-methyl-1-trichloromethylcyclohexa-2,5-dien-4-yl)pyridiunium bromide with a base (piperidine in CD2Cl2, BunLi in THF), at temperatures above −40 °C, undergoes a novel high-yield aromatizational skeletal rearrangement with migration of the CCl3 group to position 2 of the heterocycle. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 386–388, February, 1997.  相似文献   

11.
The title sponge is shown to contain eight new sesquiterpenoids for which a common, unusual biogenetic origin is postulated. The compounds are shown to be: (–)-(1R*,4R*)-3-(3′-furyl)methyl-2-p-menthen-7-yl acetate ((–)- 8b ); two diols separated as the monoacetates (–)-(1S*,4R*)-3-(3′-furyl)methyl-l-hydroxy-2-p-menthen-7-yl acetate ((–)- 13a ) and the (–)-(1R*,4R*)-epimer (–)- 13b , the two C(4)-epimeric 4-ethoxy-3-(1′(7′),2′-p-menthadien-3′-yl)methyl-2-buten-4-olides ((+)- 14a and (–)- 14b ), (–)-3-(3′-furyl)methyl-7-nor-2-p-menthen-l-one ((–)- 11 ), (–)-(3Z)-1-(3′-furyl)-4,8-dimethylnona-3, 7-dien-2-yl acetate ((–)- 17 ), and (+)-3-(5′,7′-seco-2′(10′)-pinen-7′-yl)methylfuran ((+)- 15 ).  相似文献   

12.
Some Irradiation Experiments with 2, 1-Benzisothiazoles 2, 1-Benzisothiazole ( 1 ) on irradiation with a mercury high-pressure lamp in benzene/diethylamine yields, after acetylation, 2-acetylamino-benzaldehyde ( 3 ; Scheme 1). Similarly, irradiation of 3-chloro-2, 1-benzisothiazole ( 2 ) in benzene/diethylamine leads to a mixture of 3-dimethylamino-2, 1-benzisothiazole ( 6a ) and N, N-diethyl-thioanthranilamide ( 7a ; Scheme 2). Benzisothiazole 6a , on irradiation, is not transformed into 7a . On the other hand, when 2 is irradiated in methanol a mixture of 3-methoxy-2, 1-benzisothiazole ( 4a ) and methyl anthranilate ( 5a ; Scheme 2) is obtained. In this case, 4a on irradiation in methanol or ethanol also yields 5a . No exchange of the methoxy group in 4a is observed when the irradiation is performed in ethanolic solution. Thus, 2, 1-benzisothiazoles 1 , 2 and 4a react photochemically by N,S-bond cleavage and hydrogen-atom abstraction from the solvent (Scheme 3). 3-Chloro-2, 1-benzisothiazole ( 2 ) shows a second photoreaction, i.e. nucleophilic exchange of the chloro substituent by methanol or diethyl amine. The latter reaction can also be observed thermally, e.g. in boiling methanol in the presence of methoxide ions.  相似文献   

13.
Irradiation of 4-Allylated 2,6-Dimethylanilines in Methanol 4-Allyl-, 4-(1′-methylallyl)-, 4-(2′-butenyl)-, and 4-(1′,1′-dimethylallyl)-2,6-dimethylaniline ( 14–17 ; cf. Scheme 3) were obtained by the acid catalysed, thermal rearrangement of the corresponding N-allylated anilines in good yields. Aniline 14 , when irradiated with a high pressure mercury lamp through quartz in methanol, yielded as main product 4-(2′-methoxypropyl)-2,6-dimethylaniline ( 22 ; cf. Scheme 4) and, in addition, 2,6-dimethyl-4-propylaniline ( 18 ) and 4-cyclopropyl-2,6-dimethylaniline ( 23 ). The analogous products, namely erythro- and threo-4-(2′-methoxy-1′-methylpropyl)-2,6-dimethylaniline (erythro- and threo- 24 ), 2,6-dimethyl-4-(1′-methylpropyl)aniline ( 19 ), trans- and cis-2,6-dimethyl-4-(2′-methylcyclopropyl)aniline (trans- and cis- 25 ), as well as small amounts of 4-ethyl-2,6-dimethylaniline ( 26 ), were formed by irradiation of 15 in methanol (cf. Scheme 5). When this photoreaction was carried out in O-deuteriomethanol, erythro- and threo- 24 showed an up-take of one deuterium atom in the side chain. The mass spectra of erythro- and threo- 24 revealed that in 50% of the molecules the deuterium was located at the methyl group at C(1′) and in the other 50% at the methyl group at C(2′) (cf. Scheme 6). This is a good indication that the methanol addition products arise from methanolysis of intermediate spiro[2.5]octa-4,7-dien-6-imines (cf. Scheme 7). This assumption is further supported by the photoreaction of 17 in methanol (cf. Scheme 8) which led to the formation of 4-(2′-methoxy-1′,2′-dimethylpropyl)-2,6-dimethylaniline ( 28 ) as main product. The occurrence of a rearranged side chain in 28 can again be explained by the intervention of a spirodienimine 31 (cf. Scheme 9). In comparison with 14, 15 and 17 , the 2′-butenylaniline 16 reacted only sluggishly on irradiation in methanol (cf. Scheme 10). It is suggested that all photoproducts - except for the cyclopropyl derivatives which are formed presumably via a triplet di-π-methane rearrangement - arise from an intramolecular singlet electron-donor-acceptor complex between the aniline and ethylene chromophor of the side chain. Protonation of this complex at C(3′) or C(2′) will lead to diradicals (e.g. 33 and 34 , respectively, in Scheme 11). The diradicals of type 33 undergo ring closure to the corresponding spirodienimine intermediates (e.g. 31 ) whereas the diradicals of type 34 take up two hydrogen atoms to yield the photo-hydrogenated compounds (e.g. 21 ) or undergo to a minor extent fragmentation to side chain degraded products (e.g. 30 ; see also footnote 7).–Irradiation of 4-ally-2,6-dimethylaniline ( 14 ) in benzene or cyclohexane yielded the corresponding azo compound 38 (cf. Scheme 12), whereas its N,N-dimethyl derivative 41 was transformed into the cyclopropyl derivative 42 . The allyl moiety in 14 is not necessary for the formation of azo compounds since 2,4,6-trimethylaniline ( 39 ) exhibited the same type of photoreaction in benzene solution.  相似文献   

14.
The reactions of 1,4-bis[2-(tributylstannyl)tetrazol-5-yl]benzene with α,ω-dibromoalkanes were carried out in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazole. This led to the formation of several alkyl halide derivatives, substituted variously at N1 or N2 on the tetrazole ring. The crystal structures of 1,4-bis[(2-(4-bromobutyl)tetrazol-5-yl)]benzene (2-N,2-N′), 1,4-bis[(2-(4-bromobutyl)tetrazol-5-yl)]benzene (1-N,2-N′) and 1,4-bis[(2-(8-bromooctyl)tetrazol-5-yl)]benzene (2-N,2-N′) are reported. Further discussion involves the structure of 1,4-bis[2-(6-bromohexyl)-2H-tetrazol-5-yl]benzene (2-N,2-N′) previously reported.  相似文献   

15.
In aqueous base medium p-bis{3-[N-(3-chlorobuten-2-yl)pyrrolidinio (piperidinio or morpholinio)]-propyn-1-yl}benzene dichlorides undergo a two-way dehydrochlorination-cyclization reaction to form benzo[5,6-a:5′,6′-c]bis(2,2-tetramethylene- or -2,2-pentamethylene-4-methylisoindolinium) and benzo-[5,6-a:5′,6′-c]bisspiro(4-methylisoindoline-2,4′-morpholinium) dichlorides. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 4, pp. 546–549, April, 2009.  相似文献   

16.
2-(1′-cis,3′-cis-)- and 2-(1′-cis,3′-trans-Penta-1′,3′-dienyl)-phenol (cis, cis- 4 and cis, trans- 4 , cf. scheme 1) rearrange thermally at 85–110° via [1,7 a] hydrogen shifts to yield the o-quinomethide 2 (R ? CH3) which rapidly cyclises to give 2-ethyl-2H-chromene ( 7 ). The trans formation of cis, cis- and cis, trans- 4 into 7 is accompanied by a thermal cis, trans isomerisation of the 3′ double bond in 4. The isomerisation indicates that [1,7 a] hydrogen shifts in 2 compete with the electrocyclic ring closure of 2 . The isomeric phenols, trans, trans- and trans, cis- 4 , are stable at 85–110° but at 190° rearrange also to form 7 . This rearrangement is induced by a thermal cis, trans isomerisation of the 1′ double bond which occurs via [1, 5s] hydrogen shifts. Deuterium labelling experiments show that the chromene 7 is in equilibrium with the o-quinomethide 2 (R ? CH3), at 210°. Thus, when 2-benzyl-2H-chromene ( 9 ) or 2-(1′-trans,3′-trans,-4′-phenyl-buta1′,3′-dienyl)-phenol (trans, trans- 6 ) is heated in diglyme solution at >200°, an equilibrium mixture of both compounds (~ 55% 9 and 45% 6 ) is obtained.  相似文献   

17.
trans-Anethole [1-methoxy-4-(trans-prop-1-en-1-yl)benzene] was isolated from anise seed oil (Pimpinella anisum). Its photochemical oxidation with hydrogen peroxide gave the corresponding epoxy derivative together with 4-methoxybenzaldehyde. The thermal oxidation of trans-anethole with 3-chloroperoxybenzoic acid at room temperature resulted in the formation of dimeric epoxide, 2,5-bis(4-methoxyphenyl)-3,6-dimethyl-1,4-dioxane, as the only product. Photochemical oxygenation of trans-anethole in the presence of tetraphenylporphyrin, Rose Bengal, or chlorophyll as sensitizer led to a mixture of 1-(4-methoxyphenyl)prop-2-en-1-yl hydroperoxide and 4-methoxybenzaldehyde. Eugenol was isolated from clove oil [Eugenia caryophyllus (Spreng.)]. It was converted into 2-methoxy-4-(prop-2-en-1-yl)phenyl hydroperoxide by oxidation with hydrogen peroxide under irradiation. Thermal oxidation of eugenol with 3-chloroperoxypenzoic acid at room temperature produced 2-methoxy-4-(oxiran-2-ylmethyl)phenol, while sensitized photochemical oxygenation (in the presence of Rose Bengal or chlorophyll) gave 4-hydroperoxy-2-methoxy-4-(prop-2-en-1-yl)cyclohexa-2,5-dien-1-one. Published in Russian in Zhurnal Organicheskoi Khimii, 2008, Vol. 44, No. 6, pp. 834–841. The text was submitted by the authors in English.  相似文献   

18.
(Z)-1,6-Anhydro-3-deoxy-4-methylsulfanyl-3-[(methylsulfanyl)methylene]-β-D-erythro-hexopyranos-2-ulose (1) reacted with diethyl malonate, 1,3-diketones, N-aryl-3-oxobutyramides and dialkyl 3-oxoglutarate, respectively, in the presence of potassium carbonate and crown ether to yield diethyl 2-(1,6-anhydro-4-methylsulfanyl—D-arabino-hex-2-ulopyranos-3-ylmethylene) malonate (2), 1-{(1R,2S,8S,9R)-2-hydroxy-4-methyl-8-methylthio-3,11,12- trioxatricyclo7.2.1.02,7dodeca-4,6-dien-5-yl} ethanone (3), (1R,2S,12S,13R)-2-hydroxy-12-methylthio-3,15,16-trioxatetracyclo[11.2.1. 02,11. 04,9] hexadeca- 4(9),10-dien-8-one (4), (1R,8S,9R)-5-acetyl-3-aryl-8-methylthio-11,12-dioxa- 3-azatricyclo-[7.2.1.02,7]dodeca-2(7),5-dien-4-ones (5,6) and dialkyl (1R,8S,-9R)-4-hydroxy-8-methylthio-11,12-dioxatricyclo[7.2.1.02,7]dodeca-2(7),3,5-triene-3,5-dicarboxylates (7,8), respectively.  相似文献   

19.
Reactions of 2-arylazo-3-(1-azacycloalk-1-yl)-3-methylsulfanylacrylonitriles with male-imide in benzene gave octahydropyrrolo[3,4-a]pyrrolizines 2ac, decahydro-2,7a-diaza-cyclopenta[a]indene 2e, and decahydro-5-oxa-2,7a-diazacyclopenta[a]indene 2f as a result of 1,3-dipolar cycloaddition. In a similar reaction with 3-allylsulfanyl-2-arylazo-3-(1-azacycloalk-1-yl)acrylonitriles 3, dipolar cycloaddition and intramolecular cyclization competed to give a mixture of compounds 2 (major products) and 1,4,6,7,8,8a-hexahydropyrrolo[2,1-c]-1,2,4-triazines 4bd, 1,6,7,8,9,9a-hexahydro-4H-pyrido[2,1-c]-1,2,4-triazine 4e, and 1,4,6,7,9,9a-hexahydro-1,4-oxazino[3,4-c]-1,2,4-triazine 4f (minor products).  相似文献   

20.
(1R, 2R, 4R)-2-endo-Cyano-7-oxabicyclo[2.2.1]hept-5-en-2-yl acetate ((?)-7) has been transformed into the all-cis-configurated 4L -4,5,6/0-trihydroxycyclohex-2-en-1-one derivatives (?)- 12 and (?)- 19 . (?)-Conduritol C ((?)- 3 ) was derived in a stereospecific manner from (?)- 12 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号