首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.

The basic aim of this article is to present a novel efficient matrix approach for solving the second-order linear matrix partial differential equations (MPDEs) under given initial conditions. For imposing the given initial conditions to the main MPDEs, the associated matrix integro-differential equations (MIDEs) with partial derivatives are obtained from direct integration with regard to the spatial variable x and time variable t. Hence, operational matrices of differentiation and integration together with the completeness of Bernoulli polynomials are used to reduce the obtained MIDEs to the corresponding algebraic Sylvester equations. Using two well-known subspace Krylov iterative methods (i.e., GMRES(10) and Bi-CGSTAB) we provide two algorithms for solving the mentioned Sylvester equations. A numerical example is provided to show the efficiency and accuracy of the presented approach.

  相似文献   

2.
This paper describes an approach to generalized Bernoulli polynomials in higher dimensions by using Clifford algebras. Due to the fact that the obtained Bernoulli polynomials are special hypercomplex holomorphic (monogenic) functions in the sense of Clifford Analysis, they have properties very similar to those of the classical polynomials. Hypercomplex Pascal and Bernoulli matrices are defined and studied, thereby generalizing results recently obtained by Zhang and Wang (Z. Zhang, J. Wang, Bernoulli matrix and its algebraic properties, Discrete Appl. Math. 154 (11) (2006) 1622-1632).  相似文献   

3.
In this article, a new method is introduced for finding the exact solution of the product form of parabolic equation with nonlocal boundary conditions. Approximation solution of the present problem is implemented by the Ritz–Galerkin method in Bernoulli polynomials basis. The properties of Bernoulli polynomials are first presented, then Ritz–Galerkin method in Bernoulli polynomials is used to reduce the given differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the techniques presented in this article for finding the exact and approximation solutions. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 1143–1158, 2017  相似文献   

4.
In this paper, an efficient method for solving nonlinear Stratonovich Volterra integral equations is proposed. By using Bernoulli polynomials and their stochastic operational matrix of integration, these equations can be reduced to the system of nonlinear algebraic equations with unknown Bernoulli coefficient which can be solved by numerical methods such as Newton’s method. Also, an error analysis is valid under fairly restrictive conditions. Furthermore, in order to show the accuracy and reliability of the proposed method, the new approach is compared with the block pulse functions method by some examples. The obtained results reveal that the proposed method is more accurate and efficient than the block pulse functions method.  相似文献   

5.
This paper presents a direct solution technique for solving the generalized pantograph equation with variable coefficients subject to initial conditions, using a collocation method based on Bernoulli operational matrix of derivatives. Only small dimension of Bernoulli operational matrix is needed to obtain a satisfactory result. Numerical results with comparisons are given to confirm the reliability of the proposed method for generalized pantograph equations.  相似文献   

6.
In this paper, a new numerical method for solving the fractional Bagley‐Torvik equation is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block‐pulse functions and Bernoulli polynomials are presented. The Riemann‐Liouville fractional integral operator for hybrid functions is introduced. This operator is then utilized to reduce the solution of the initial and boundary value problems for the fractional Bagley‐Torvik differential equation to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
For large sparse systems of linear equations iterative techniques are attractive. In this paper, we study a splitting method for an important class of symmetric and indefinite system. Theoretical analyses show that this method converges to the unique solution of the system of linear equations for all t>0 (t is the parameter). Moreover, all the eigenvalues of the iteration matrix are real and nonnegative and the spectral radius of the iteration matrix is decreasing with respect to the parameter t. Besides, a preconditioning strategy based on the splitting of the symmetric and indefinite coefficient matrices is proposed. The eigensolution of the preconditioned matrix is described and an upper bound of the degree of the minimal polynomials for the preconditioned matrix is obtained. Numerical experiments of a model Stokes problem and a least‐squares problem with linear constraints presented to illustrate the effectiveness of the method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The aim of this paper is to introduce and investigate some of the primary generalizations and unifications of the Peters polynomials and numbers by means of convenient generating functions and p‐adic integrals method. Various fundamental properties of these polynomials and numbers involving some explicit series and integral representations in terms of the generalized Stirling numbers, generalized harmonic sums, and some well‐known special numbers and polynomials are presented. By using p‐adic integrals, we construct generating functions for Peters type polynomials and numbers (Apostol‐type Peters numbers and polynomials). By using these functions with their partial derivative eqautions and functional equations, we derive many properties, relations, explicit formulas, and identities including the Apostol‐Bernoulli polynomials, the Apostol‐Euler polynomials, the Boole polynomials, the Bernoulli polynomials, and numbers of the second kind, generalized harmonic sums. A brief revealing and historical information for the Peters type polynomials are given. Some of the formulas given in this article are given critiques and comments between previously well‐known formulas. Finally, two open problems for interpolation functions for Apostol‐type Peters numbers and polynomials are revealed.  相似文献   

9.
This paper presents a numerical method for the approximate solution of mth-order linear delay difference equations with variable coefficients under the mixed conditions in terms of Laguerre polynomials. The aim of this article is to present an efficient numerical procedure for solving mth-order linear delay difference equations with variable coefficients. Our method depends mainly on a Laguerre series expansion approach. This method transforms linear delay difference equations and the given conditions into matrix equation which corresponds to a system of linear algebraic equation. The reliability and efficiency of the proposed scheme are demonstrated by some numerical experiments and performed on the computer algebraic system Maple.  相似文献   

10.
In this study, solvability of the initial boundary value problem for general form Euler–Bernoulli beam equation which includes also moving point-loads is investigated. The complete proof of an existence and uniqueness properties of the weak solution of the considered equation with Dirichlet type boundary conditions is derived. The method used here is based on Galerkin approximation which is the main tool for the weak solution theory of linear evolution equations as well as in derivation of a priori estimate for the approximate solutions. All steps of the proposed technique are explained in detail.  相似文献   

11.
许艳 《中国科学:数学》2014,44(4):409-422
本文利用渐近于Gauss函数的函数类?,给出渐近于Hermite正交多项式的一类Appell多项式的构造方法,使得该序列与?的n阶导数之间构成了一组双正交系统.利用此结果,本文得到多种正交多项式和组合多项式的渐近性质.特别地,由N阶B样条所生成的Appell多项式序列恰为N阶Bernoulli多项式.从而,Bernoulli多项式与B样条的导函数之间构成了一组双正交系统,且标准化之后的Bernoulli多项式的渐近形式为Hermite多项式.由二项分布所生成的Appell序列为Euler多项式,从而,Euler多项式与二项分布的导函数之间构成一组双正交系统,且标准化之后的Euler多项式渐近于Hermite多项式.本文给出Appell序列的生成函数满足的尺度方程的充要条件,给出渐近于Hermite多项式的函数列的判定定理.应用该定理,验证广义Buchholz多项式、广义Laguerre多项式和广义Ultraspherical(Gegenbauer)多项式渐近于Hermite多项式的性质,从而验证超几何多项式的Askey格式的成立.  相似文献   

12.
In this paper, a new numerical method for solving the nonlinear constrained optimal control with quadratic performance index is presented. The method is based upon hybrid functions approximation. The properties of hybrid functions consisting of block-pulse functions and Bernoulli polynomials are presented. The operational matrix of integration is introduced. This matrix is then utilized to reduce the solution of the nonlinear constrained optimal control to a nonlinear programming one to which existing well-developed algorithms may be applied. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

13.
This article develops an efficient solver based on collocation points for solving numerically a system of linear Volterra integral equations (VIEs) with variable coefficients. By using the Euler polynomials and the collocation points, this method transforms the system of linear VIEs into the matrix equation. The matrix equation corresponds to a system of linear equations with the unknown Euler coefficients. A small number of Euler polynomials is needed to obtain a satisfactory result. Numerical results with comparisons are given to confirm the reliability of the proposed method for solving VIEs with variable coefficients.  相似文献   

14.
In this study, a Legendre collocation matrix method is presented to solve high-order Linear Fredholm integro-differential equations under the mixed conditions in terms of Legendre polynomials. The proposed method converts the equation and conditions to matrix equations, by means of collocation points on the interval [−1, 1], which corresponding to systems of linear algebraic equations with Legendre coefficients. Thus, by solving the matrix equation, Legendre coefficients and polynomial approach are obtained. Also examples that illustrate the pertinent features of the method are presented and by using the error analysis, the results are discussed.  相似文献   

15.
This paper proposes operational matrix of rth integration of Chebyshev wavelets. A general procedure of this matrix is given. Operational matrix of rth integration is taken as rth power of operational matrix of first integration in literature. But, this study removes this disadvantage of Chebyshev wavelets method. Free vibration problems of non-uniform Euler–Bernoulli beam under various supporting conditions are investigated by using Chebyshev Wavelet Collocation Method. The proposed method is based on the approximation by the truncated Chebyshev wavelet series. A homogeneous system of linear algebraic equations has been obtained by using the Chebyshev collocation points. The determinant of coefficients matrix is equated to the zero for nontrivial solution of homogeneous system of linear algebraic equations. Hence, we can obtain ith natural frequencies of the beam and the coefficients of the approximate solution of Chebyshev wavelet series that satisfied differential equation and boundary conditions. Mode shapes functions corresponding to the natural frequencies can be obtained by normalizing of approximate solutions. The computed results well fit with the analytical and numerical results as in the literature. These calculations demonstrate that the accuracy of the Chebyshev wavelet collocation method is quite good even for small number of grid points.  相似文献   

16.

This paper is devoted to studying a computational method for solving multi-term differential equations based on new operational matrix of shifted second kind Chebyshev polynomials. The properties of the operational matrix of fractional integration are exploited to reduce the main problem to an algebraic equation. We present an upper bound for the error in our estimation that leads to achieve the convergence rate of O(M κ). Numerical experiments are reported to demonstrate the applicability and efficiency of the proposed method.

  相似文献   

17.
The main purpose of this paper is to prove an identity of symmetry for the higher order Bernoulli polynomials. It turns out that the recurrence relation and multiplication theorem for the Bernoulli polynomials which discussed in [F.T. Howard, Application of a recurrence for the Bernoulli numbers, J. Number Theory 52 (1995) 157-172], as well as a relation of symmetry between the power sum polynomials and the Bernoulli numbers developed in [H.J.H. Tuenter, A symmetry of power sum polynomials and Bernoulli numbers, Amer. Math. Monthly 108 (2001) 258-261], are all special cases of our results.  相似文献   

18.
In this study, a Hermite matrix method is presented to solve high‐order linear Fredholm integro‐differential equations with variable coefficients under the mixed conditions in terms of the Hermite polynomials. The proposed method converts the equation and its conditions to matrix equations, which correspond to a system of linear algebraic equations with unknown Hermite coefficients, by means of collocation points on a finite interval. Then, by solving the matrix equation, the Hermite coefficients and the polynomial approach are obtained. Also, examples that illustrate the pertinent features of the method are presented; the accuracy of the solutions and the error analysis are performed. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1707–1721, 2011  相似文献   

19.
In this paper, we consider the stabilization of the nonstationary incompressible Navier–Stokes equations around a stationary solution by a boundary linear feedback control. The feedback operator is obtained from the solution of the algebraic Bernoulli equation associated with the penalized linearized Navier–Stokes equations around an unstable stationary solution and is used to locally stabilize the original nonlinear equations. We give the explicit factorized form of the stabilizing solution of the algebraic Bernoulli equation. The numerical effectiveness of this approach is demonstrated by stabilizing the vortex shedding behind a circular obstacle. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
We present a computer algebra approach to proving identities on Bernoulli polynomials and Euler polynomials by using the extended Zeilberger's algorithm given by Chen, Hou and Mu. The key idea is to use the contour integral definitions of the Bernoulli and Euler numbers to establish recurrence relations on the integrands. Such recurrence relations have certain parameter free properties which lead to the required identities without computing the integrals. Furthermore two new identities on Bernoulli numbers are derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号