首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A reaction–diffusion predator–prey system with strong Allee effect and a protection zone for the prey is considered. Dynamics and steady state solutions of the system are analyzed. In particular it is shown that the overexploitation phenomenon can be avoided if the Allee effect threshold is low and the protection zone is large.  相似文献   

3.
In this paper, we investigate the complex dynamics induced by Allee effect in a predator–prey model. For the non-spatial model, Allee effect remains the boundedness of positive solutions, and it also induces the model to exhibit one or two positive equilibria. Especially, in the case with strong Allee effect, the model is bistable. For the spatial model, without Allee effect, there is the nonexistence of diffusion-driven instability. And in the case with Allee effect, the positive equilibrium can be unstable under certain conditions. This instability is induced by Allee effect and diffusion together. Furthermore, via numerical simulations, the model dynamics exhibits both Allee effect and diffusion controlled pattern formation growth to holes, stripe–hole mixtures, stripes, stripe–spot mixtures, and spots replication. That is to say, the dynamics of the model with Allee effect is not simple, but rich and complex.  相似文献   

4.
The dynamics of a kind of reaction–diffusion predator–prey system with strong Allee effect in the prey population is considered. We prove the existence and uniqueness of the solution and give a priori bound. Hopf bifurcation and steady state bifurcation are studied. Results show that the Allee effect has significant impact on the dynamics.  相似文献   

5.
A predator–prey model with logistic growth in prey is modified by introducing an SIS parasite infection in the prey. We have studied the combined effect of environmental toxicant and disease on prey–predator system. It is assumed in this paper that the environmental toxicant affects both prey and predator population and the infected prey is assumed to be more vulnerable to the toxicant and predation compared to the sound prey individuals. Thresholds are identified which determine when system persists and disease remains endemic.  相似文献   

6.
In this paper, we develop a theoretical framework about spatial patterns in a three-species predator–prey–mutualist system with cross-diffusion. We concentrate on three aspects of Turing pattern formation: (1) what conditions enable the occurrence of Turing patterns? (2) what are the underlying mechanisms? (3) what are the corresponding configurations? For the first two questions, by use of the stability analysis for the positive uniform solution and the Leray–Schauder degree theory, we prove that under some conditions, the system admits at least a nonhomogeneous stationary solution. For the third question, we carry out numerical simulations for a Turing pattern, and we show that the configurations of Turing pattern are stable spotted patterns, which resemble a real ecosystem.  相似文献   

7.
《Applied Mathematical Modelling》2014,38(19-20):4835-4848
The discrete-time predator–prey biological economic system obtained by Euler method is investigated. Some conditions for the system to undergo flip bifurcation and Neimark–Sacker bifurcation are derived by using new normal form of differential-algebraic system, center mainfold theorem and bifurcation theory. Numerical simulations are given to show the effectiveness of our results and also to exhibit period-doubling bifurcation in orbits of period 2, 4, 8 and chaotic sets. The results obtained here reveal far richer dynamics in discrete differential-algebraic biological economic system. The contents are interesting in mathematics and biology.  相似文献   

8.
We study a predator–prey model with the Allee effect on prey and whose dynamics is described by a system of stochastic differential equations assuming that environmental randomness is represented by noise terms affecting each population. More specifically, we consider a term that expresses the variability of the growth rate of both species due to external, unpredictable events. We assume that the intensities of these perturbations are proportional to the population size of each species. With this approach, we prove that the solutions of the system have sample pathwise uniqueness and bounded moments. Moreover, using an Euler–Maruyama-type numerical method we obtain approximated solutions of the system with different intensities for the random noise and parameters of the model. In the presence of a weak Allee effect, we show that long-term survival of both populations can occur. On the other hand, when a strong Allee effect is considered, we show that the random perturbations may induce the non-trivial attracting-type invariant objects to disappear, leading to the extinction of both species. Furthermore, we also find the Maximum Likelihood estimators for the parameters involved in the model.  相似文献   

9.
In this paper we consider a predator–prey system which has a factor that allows for a reduction in fitness due to declining population sizes, often termed an Allee effect. We study the influence of the weak Allee effect which is included in the prey equation and we determine conditions for the occurrence of Hopf bifurcation. The prey population is limited by the carrying capacity of the environment, and the predator growth rate depends on past quantities of the prey which is represented by a weight function that specifies a moment in the past when the quantity of food is the most important from the point of view of the present growth of the predator. The stability properties of the system and the biological issues of the memory and Allee effect on the coexistence of the two species are studied. Finally we present some simulations to verify the veracity of the analytical conclusions.  相似文献   

10.
11.
In this paper, we study a food chain model with Holling III and Monod type functional response under periodic pulsed conditions, which contains with predator, prey and periodically pulsed substrate. We investigate the subsystem with substrate and prey and study the stability of the boundary periodic solution. By use of standard techniques of bifurcation theory, we prove that above this threshold there are periodic oscillations in prey and predator. Furthermore, by comparing bifurcation diagrams with different bifurcation parameters, we can see that the system shows two kinds of bifurcations, whose are period-doubling and period-halving.  相似文献   

12.
In this paper, a diffusive predator–prey system with a constant prey refuge and time delay subject to Neumann boundary condition is considered. Local stability and Turing instability of the positive equilibrium are studied. The effect of time delay on the model is also obtained, including locally asymptotical stability and existence of Hopf bifurcation at the positive equilibrium. And the properties of Hopf bifurcation are determined by center manifold theorem and normal form theorem of partial functional differential equations. Some numerical simulations are carried out.  相似文献   

13.
This paper is concerned with a delayed predator–prey diffusive system with Neumann boundary conditions. The bifurcation analysis of the model shows that Hopf bifurcation can occur by regarding the delay as the bifurcation parameter. In addition, the direction of Hopf bifurcation and the stability of bifurcated periodic solution are also discussed by employing the normal form theory and the center manifold reduction for partial functional differential equations (PFDEs). Finally, the effect of the diffusion on bifurcated periodic solution is considered.  相似文献   

14.
A three dimensional ecoepidemiological model consisting of susceptible prey, infected prey and predator is proposed and analysed in the present work. The parameter delay is introduced in the model system for considering the time taken by a susceptible prey to become infected. Mathematically we analyze the dynamics of the system such as, boundedness of the solutions, existence of non-negative equilibria, local and global stability of interior equilibrium point. Next we choose delay as a bifurcation parameter to examine the existence of the Hopf bifurcation of the system around its interior equilibrium. Moreover we use the normal form method and center manifold theorem to investigate the direction of the Hopf bifurcation and stability of the bifurcating limit cycle. Some numerical simulations are carried out to support the analytical results.  相似文献   

15.
16.
A general seasonally-varying predator–prey model with Allee effect in the prey growth is investigated. The analysis is performed only on the basis of some properties determining the shape of the prey growth rate and the functional responses. General conditions for coexistence are determined, both in the case of weak and strong Allee effect. Finally, a modified Leslie–Gower predator–prey model with Allee effect is investigated. Numerical results illustrate the qualitative behaviors of the system, in particular the presence of periodic orbits.  相似文献   

17.
This paper deals with the qualitative properties of an autonomous system of differential equations, modeling ratio-dependent predator–prey interactions.This model differs from traditional ratio dependent models essentially in the predator mortality term, the death rate of the predator is not constant but instead increases when there is overcrowding.We incorporate delay(s) into the system. The most important observation is that as the delay(s) is (are) increased the originally asymptotic stable interior equilibrium loses its stability. Furthermore at a certain critical value a Hopf bifurcation takes place: small amplitude periodic solutions arise.  相似文献   

18.
In this work, a bidimensional continuous-time differential equations system is analyzed which is derived from Leslie type predator–prey schemes by considering a nonmonotonic functional response and Allee effect on population prey. For ecological reason, we describe the bifurcation diagram of limit cycles that appear only at the first quadrant in the system obtained. We also show that under certain conditions over the parameters, the system allows the existence of a stable limit cycle surrounding an unstable limit cycle generated by Hopf bifurcation. Furthermore, we give conditions over the parameters such that the model allows long-term extinction or survival of both populations.  相似文献   

19.
《Applied Mathematical Modelling》2014,38(21-22):5022-5032
The paper explores the impacts of cross-diffusion on the formation of spatial patterns in a ratio-dependent predator–prey system with zero-flux boundary conditions. Our results show that under certain conditions, cross-diffusion can trigger the emergence of spatial patterns which is however impossible under the same conditions when cross-diffusion is absent. We give a rigorous proof that the model has at least one spatially heterogenous steady state by means of the Leray–Schauder degree theory. In addition, numerical simulations are performed to visualize the complex spatial patterns.  相似文献   

20.
Establishing and researching a population dynamical model based on the differential equation is of great significance. In this paper, a predator–prey system with inducible defense and disease in the prey is built from biological evolution and Eco-epidemiology. The effect of disease on population stability in the predator–prey system with inducible defense is studied. Firstly, we verify the positivity and uniform boundedness of the solutions of the system. Then the existence and stability of the equilibria are studied. There are no more than nine equilibrium points in the system. We use a sophisticated parameter transformation to study the properties of the coexistence equilibrium points of the system. A sufficient condition is established for the existence of Hopf bifurcation. Numerical simulations are performed to make analytical studies more complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号